-
- Ulf Ziemann, Tihomir V Ilić, Tihomir V Iliać, Christian Pauli, Frank Meintzschel, and Diane Ruge.
- Motor Cortex Laboratory, Clinic of Neurology, Johann Wolfgang Goethe-University, D-60528 Frankfurt am Main, Germany. u.ziemann@em.uni-frankfurt.de
- J. Neurosci. 2004 Feb 18; 24 (7): 1666-72.
AbstractLearning may alter rapidly the output organization of adult motor cortex. It is a long-held hypothesis that modification of synaptic strength along cortical horizontal connections through long-term potentiation (LTP) and long-term depression (LTD) forms one important mechanism for learning-induced cortical plasticity. Strong evidence in favor of this hypothesis was provided for rat primary motor cortex (M1) by showing that motor learning reduced subsequent LTP but increased LTD. Whether a similar relationship exists in humans is unknown. Here, we induced LTP-like and LTD-like plasticity in the intact human M1 by an established paired associative stimulation (PAS) protocol. PAS consisted of 200 pairs of electrical stimulation of the right median nerve, followed by focal transcranial magnetic stimulation of the hand area of the left M1 at an interval equaling the individual N20 latency of the median nerve somatosensory-evoked cortical potential (PAS(N20)) or N20-5 msec (PAS(N20-5)). PAS(N20) induced reproducibly a LTP-like long-lasting (>30 min) increase in motor-evoked potentials from the left M1 to a thumb abductor muscle of the right hand, whereas PAS(N20-5) induced a LTD-like decrease. Repeated fastest possible thumb abduction movements resulted in learning, defined by an increase in maximum peak acceleration of the practiced movements, and prevented subsequent PAS(N20)-induced LTP-like plasticity but enhanced subsequent PAS(N20-5)-induced LTD-like plasticity. The same number of repeated slow thumb abduction movements did not result in learning and had no effects on PAS-induced plasticity. Findings support the view that learning in human M1 occurs through LTP-like mechanisms.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.