-
Clinical Trial
The effects of low tidal ventilation on lung strain correlate with respiratory system compliance.
- Jianfeng Xie, Fang Jin, Chun Pan, Songqiao Liu, Ling Liu, Jingyuan Xu, Yi Yang, and Haibo Qiu.
- Department of Critical Care Medicine, Nanjing ZhongDa Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, 210009, China.
- Crit Care. 2017 Feb 3; 21 (1): 2323.
BackgroundThe effect of alterations in tidal volume on mortality of acute respiratory distress syndrome (ARDS) is determined by respiratory system compliance. We aimed to investigate the effects of different tidal volumes on lung strain in ARDS patients who had various levels of respiratory system compliance.MethodsNineteen patients were divided into high (Chigh group) and low (Clow group) respiratory system compliance groups based on their respiratory system compliance values. We defined compliance ≥0.6 ml/(cmH2O/kg) as Chigh and compliance <0.6 ml/(cmH2O/kg) as Clow. End-expiratory lung volumes (EELV) at various tidal volumes were measured by nitrogen wash-in/washout. Lung strain was calculated as the ratio between tidal volume and EELV. The primary outcome was that lung strain is a function of tidal volume in patients with various levels of respiratory system compliance.ResultsThe mean baseline EELV, strain and respiratory system compliance values were 1873 ml, 0.31 and 0.65 ml/(cmH2O/kg), respectively; differences in all of these parameters were statistically significant between the two groups. For all participants, a positive correlation was found between the respiratory system compliance and EELV (R = 0.488, p = 0.034). Driving pressure and strain increased together as the tidal volume increased from 6 ml/kg predicted body weight (PBW) to 12 ml/kg PBW. Compared to the Chigh ARDS patients, the driving pressure was significantly higher in the Clow patients at each tidal volume. Similar effects of lung strain were found for tidal volumes of 6 and 8 ml/kg PBW. The "lung injury" limits for driving pressure and lung strain were much easier to exceed with increases in the tidal volume in Clow patients.ConclusionsRespiratory system compliance affected the relationships between tidal volume and driving pressure and lung strain in ARDS patients. These results showed that increasing tidal volume induced lung injury more easily in patients with low respiratory system compliance.Trial RegistrationClinicaltrials.gov identifier NCT01864668 , Registered 21 May 2013.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.