• J. Biol. Chem. · Jan 2005

    Direct voltage control of signaling via P2Y1 and other Galphaq-coupled receptors.

    • Juan Martinez-Pinna, Iman S Gurung, Catherine Vial, Catherine Leon, Christian Gachet, Richard J Evans, and Martyn P Mahaut-Smith.
    • Department of Physiology, University of Cambridge, Cambridge CB2 3EG, United Kingdom.
    • J. Biol. Chem. 2005 Jan 14; 280 (2): 1490-8.

    AbstractEmerging evidence suggests that Ca2+ release evoked by certain G-protein-coupled receptors can be voltage-dependent; however, the relative contribution of different components of the signaling cascade to this response remains unclear. Using the electrically inexcitable megakaryocyte as a model system, we demonstrate that inositol 1,4,5-trisphosphate-dependent Ca2+ mobilization stimulated by several agonists acting via Galphaq-coupled receptors is potentiated by depolarization and that this effect is most pronounced for ADP. Voltage-dependent Ca2+ release was not induced by direct elevation of inositol 1,4,5-trisphosphate, by agents mimicking diacylglycerol actions, or by activation of phospholipase Cgamma-coupled receptors. The response to voltage did not require voltage-gated Ca2+ channels as it persisted in the presence of nifedipine and was only weakly affected by the holding potential. Strong predepolarizations failed to affect the voltage-dependent Ca2+ increase; thus, an alteration of G-protein betagamma subunit binding is also not involved. Megakaryocytes from P2Y1(-/-) mice lacked voltage-dependent Ca2+ release during the application of ADP but retained this response after stimulation of other Galphaq-coupled receptors. Although depolarization enhanced Ca2+ mobilization resulting from GTPgammaS dialysis and to a lesser extent during AlF4- or thimerosal, these effects all required the presence of P2Y1 receptors. Taken together, the voltage dependence to Ca2+ release via Galphaq-coupled receptors is not due to control of G-proteins or down-stream signals but, rather, can be explained by a voltage sensitivity at the level of the receptor itself. This effect, which is particularly robust for P2Y1 receptors, has wide-spread implications for cell signaling.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…