• J. Neurosci. · Mar 2000

    Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current.

    • M S Shapiro, J P Roche, E J Kaftan, H Cruzblanca, K Mackie, and B Hille.
    • Department of Physiology, University of Washington School of Medicine, Seattle, Washington 98195, USA. mshapiro@u.washington.edu
    • J. Neurosci. 2000 Mar 1; 20 (5): 1710-21.

    AbstractChannels from KCNQ2 and KCNQ3 genes have been suggested to underlie the neuronal M-type K(+) current. The M current is modulated by muscarinic agonists via G-proteins and an unidentified diffusible cytoplasmic messenger. Using whole-cell clamp, we studied tsA-201 cells in which cloned KCNQ2/KCNQ3 channels were coexpressed with M(1) muscarinic receptors. Heteromeric KCNQ2/KCNQ3 currents were modulated by the muscarinic agonist oxotremorine-M (oxo-M) in a manner having all of the characteristics of modulation of native M current in sympathetic neurons. Oxo-M also produced obvious intracellular Ca(2+) transients, observed by using indo-1 fluorescence. However, modulation of the current remained strong even when Ca(2+) signals were abolished by the combined use of strong intracellular Ca(2+) buffers, an inhibitor of IP(3) receptors, and thapsigargin to deplete Ca(2+) stores. Muscarinic modulation was not blocked by staurosporine, a broad-spectrum protein kinase inhibitor, arguing against involvement of protein kinases. The modulation was not associated with a shift in the voltage dependence of channel activation. Homomeric KCNQ2 and KCNQ3 channels also expressed well and were modulated individually by oxo-M, suggesting that the motifs for modulation are present on both channel subtypes. Homomeric KCNQ2 and KCNQ3 currents were blocked, respectively, at very low and at high concentrations of tetraethylammonium ion. Finally, when KCNQ2 subunits were overexpressed by intranuclear DNA injection in sympathetic neurons, total M current was fully modulated by the endogenous neuronal muscarinic signaling mechanism. Our data further rule out Ca(2+) as the diffusible messenger. The reconstitution of muscarinic modulation of the M current that uses cloned components should facilitate the elucidation of the muscarinic signaling mechanism.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…