• The lancet oncology · Feb 2017

    Review

    Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques.

    • Thankamma Ajithkumar, Stephen Price, Gail Horan, Amos Burke, and Sarah Jefferies.
    • Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK. Electronic address: thankamma.ajithkumar@addenbrookes.nhs.uk.
    • Lancet Oncol. 2017 Feb 1; 18 (2): e91-e100.

    AbstractNeurocognitive dysfunction is the leading cause of reduced quality of life in long-term survivors of paediatric brain tumours. Radiotherapy is one of the main contributors to neurocognitive sequelae. Current approaches for prevention and reduction of neurocognitive dysfunction include avoidance of radiotherapy in young children and reduction of the radiotherapy dose and volume of brain irradiated. Substantial advances have been made in brain imaging, especially with functional imaging and fibre tracking with the use of diffusion tensor imaging. Radiotherapy techniques for photon therapy have also evolved, with widespread use of techniques such as image-guided radiotherapy, volumetric modulated arc therapy, helical tomotherapy, and adaptive radiotherapy. The number of proton beam and heavy ion therapy facilities is increasing worldwide and there is great enthusiasm for clinical use of advanced MRI-guided radiotherapy systems. Here, we review the potential role of modern imaging and innovative radiotherapy techniques in minimisation of neurocognitive sequelae in children with brain tumours, and discuss various strategies to integrate these advances to drive further research.Copyright © 2017 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.