• Eur J Trauma Emerg Surg · Dec 2017

    Survival prediction of trauma patients: a study on US National Trauma Data Bank.

    • I Sefrioui, R Amadini, J Mauro, A El Fallahi, and M Gabbrielli.
    • Faculty of Sciences of Tetouan, University Abdelmalek Essaadi, Tétouan, Morocco. sefrioui.imane@gmail.com.
    • Eur J Trauma Emerg Surg. 2017 Dec 1; 43 (6): 805-822.

    BackgroundExceptional circumstances like major incidents or natural disasters may cause a huge number of victims that might not be immediately and simultaneously saved. In these cases it is important to define priorities avoiding to waste time and resources for not savable victims. Trauma and Injury Severity Score (TRISS) methodology is the well-known and standard system usually used by practitioners to predict the survival probability of trauma patients. However, practitioners have noted that the accuracy of TRISS predictions is unacceptable especially for severely injured patients. Thus, alternative methods should be proposed.MethodsIn this work we evaluate different approaches for predicting whether a patient will survive or not according to simple and easily measurable observations. We conducted a rigorous, comparative study based on the most important prediction techniques using real clinical data of the US National Trauma Data Bank.ResultsEmpirical results show that well-known Machine Learning classifiers can outperform the TRISS methodology. Based on our findings, we can say that the best approach we evaluated is Random Forest: it has the best accuracy, the best area under the curve, and k-statistic, as well as the second-best sensitivity and specificity. It has also a good calibration curve. Furthermore, its performance monotonically increases as the dataset size grows, meaning that it can be very effective to exploit incoming knowledge. Considering the whole dataset, it is always better than TRISS. Finally, we implemented a new tool to compute the survival of victims. This will help medical practitioners to obtain a better accuracy than the TRISS tools.ConclusionRandom Forests may be a good candidate solution for improving the predictions on survival upon the standard TRISS methodology.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.