• Respiratory care · May 2017

    Pulmonary Function and Retrobulbar Hemodynamics in Subjects With Type 2 Diabetes Mellitus.

    • He Tai, Ming-Yue Wang, Yue-Ping Zhao, Ling-Bing Li, Xiao-Lin Jiang, Zheng Dong, Xiao-Nan Lv, Jing Liu, Qian-Yan Dong, Xin-Guang Liu, and Jin-Song Kuang.
    • Department of Endocrinology and Metabolism, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, China.
    • Respir Care. 2017 May 1; 62 (5): 602-614.

    BackgroundThe primary goals of this study were to evaluate early changes in pulmonary function and retrobulbar hemodynamics and to examine the correlation between these parameters in patients with type 2 diabetes during the preclinical stages of diabetic retinopathy.MethodsFor the single-time point measurements, 63 subjects with type 2 diabetes without diabetic retinopathy (diabetes group) and 32 healthy subjects (control group) were selected to evaluate any early changes in pulmonary function and retrobulbar hemodynamics and to examine the correlation between these parameters. In the longitudinal follow-up study, 32 subjects who were newly diagnosed with type 2 diabetes were divided into 2 groups according to their resistivity index (≤0.7 and >0.7). Early changes in pulmonary function and retrobulbar hemodynamics were studied in these groups and compared with the previous values.ResultsFor the single-time point measurements, the fasting plasma glucose, 2-h postprandial blood glucose, glycosylated hemoglobin A1c, total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels as well as the pulmonary function parameters were significantly higher in the diabetes group than in the control group. The pulmonary function parameters were negatively and significantly correlated with glycosylated hemoglobin A1c and the duration of diabetes. The retrobulbar hemodynamics were positively correlated with glycosylated hemoglobin A1c and diabetes duration; in contrast, the correlation between retrobulbar hemodynamics and glycosylated hemoglobin A1c. In the longitudinal follow-up study, the pulmonary function of the 2 groups categorized by their resistivity index levels indicated that subjects with resistivity index levels ≤0.7 showed significantly better pulmonary function, and the pulmonary function of this group showed improvement and a significantly smaller decrease. The incidence of diabetic retinopathy in the group with resistivity index levels ≤0.7 (9 of 22, 40.9%) was significantly lower than that in the group with resistivity index levels >0.7.ConclusionsPulmonary function and retrobulbar hemodynamics changed during the preclinical stages of diabetic retinopathy. Regulating glycemia may improve retrobulbar hemodynamics in the retrobulbar arteries (ie, central retinal artery, posterior ciliary artery, and arteria ophthalmica). By detecting the retrobulbar resistivity index and the levels of glycosylated hemoglobin A1c, we could predict future changes in pulmonary function during the preclinical stages of diabetic retinopathy as well as the degree of retinopathy. (ClinicalTrials.gov registration NCT02774733.).Copyright © 2017 by Daedalus Enterprises.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.