• Minerva anestesiologica · Aug 2017

    Low flow veno-venous extracorporeal CO2 removal for acute hypercapnic respiratory failure.

    • Matthias P Hilty, Thomas Riva, Silvia R Cottini, Eva-Maria Kleinert, Alessandra Maggiorini, and Marco Maggiorini.
    • Medical Intensive Care Unit, University Hospital of Zurich, Zurich, Switzerland - matthias.hilty@usz.ch.
    • Minerva Anestesiol. 2017 Aug 1; 83 (8): 812-823.

    BackgroundVentilation with low tidal volume and airway pressure results in a survival benefit in ARDS patients. Previous research suggests that avoiding mechanical ventilation altogether may be beneficial in some cases of respiratory failure. Our hypothesis was that low flow veno-venous extracorporeal CO2 removal (ECCO2R) enables maintenance of a lung protective ventilation strategy or awake spontaneous ventilation despite severe hypercapnic respiratory failure (HRF).MethodsTwenty patients with HRF were investigated while mechanically ventilated (N.=14) or breathing spontaneously close to respiratory exhaustion (N.=6). Low flow ECCO2R was performed using a hemoperfusion device with a polypropylene gas-exchanger.ResultsCauses of HRF were severe ARDS (N.=11), COPD (N.=4), chronic lung transplant rejection (N.=3) and cystic fibrosis (N.=2). During the first 8h of ECCO2R, PaCO2 decreased from 10.6 (9.3-12.9) to 7.9 (7.3-9.3) kPa (P<0.001) and pH increased from 7.23 (7.09-7.40) to 7.36 (7.27-7.41) (P<0.05). Thereafter, steady state was achieved while maintaining lung protective tidal volume (4.7 (3.8-6.5) mL/kg) and peak ventilator pressure (28 (27-30) mbar at 24 h). During the first 48 h, thrombocyte count decreased by 52% (P<0.01), Fibrinogen by 38% (P<0.05). Intubation could be avoided in all spontaneously breathing patients. In 4/6 high blood flow extracorporeal circulation was required due to increased oxygen demand. 6/14 mechanically ventilated patients recovered from respiratory support.ConclusionsOur results suggest that in mechanically ventilated patients with HRF, low flow ECCO2R supports the maintenance of lung protective tidal volume and peak ventilator pressure. In selected awake patients with acute HRF, it may be a novel treatment approach to avoid mechanical ventilation, hence preventing ventilator- and sedation-associated morbidity and mortality.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…