• The cerebellum · Mar 2012

    Multicenter Study Comparative Study

    Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings.

    • Heike Jacobi, Till-Karsten Hauser, Paola Giunti, Christoph Globas, Peter Bauer, Tanja Schmitz-Hübsch, László Baliko, Alessandro Filla, Caterina Mariotti, Maria Rakowicz, Perine Charles, Pascale Ribai, Sandra Szymanski, Jon Infante, Bart P C van de Warrenburg, Alexandra Dürr, Dagmar Timmann, Sylvia Boesch, Roberto Fancellu, Rafal Rola, Chantal Depondt, Ludger Schöls, Elzbieta Zdzienicka, Jun-Suk Kang, Susanne Ratzka, Berry Kremer, Dennis A Stephenson, Béla Melegh, Massimo Pandolfo, Sophie Tezenas du Montcel, Johannes Borkert, Jörg B Schulz, and Thomas Klockgether.
    • Department of Neurology, University Hospital of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany. heike.jacobi@ukb.uni-bonn.de
    • Cerebellum. 2012 Mar 1; 11 (1): 155-66.

    AbstractTo assess the clinical spectrum of ataxia and cerebellar oculomotor deficits in the most common spinocerebellar ataxias (SCAs), we analysed the baseline data of the EUROSCA natural history study, a multicentric cohort study of 526 patients with either spinocerebellar ataxia type 1, 2, 3 or 6. To quantify ataxia symptoms, we used the Scale for the Assessment and Rating of Ataxia (SARA). The presence of cerebellar oculomotor signs was assessed using the Inventory of Non-Ataxia Symptoms (INAS). In a subgroup of patients, in which magnetic resonance images (MRIs) were available, we correlated MRI morphometric measures with clinical signs on an exploratory basis. The SARA subscores posture and gait (items 1-3), speech (item 4) and the limb kinetic subscore (items 5-8) did not differ between the genotypes. The scores of SARA item 3 (sitting), 5 (finger chase) and 6 (nose-finger test) differed between the subtypes whereas the scores of the remaining items were not different. In SCA1, ataxia symptoms were correlated with brainstem atrophy and in SCA3 with both brainstem and cerebellar atrophy. Cerebellar oculomotor deficits were most frequent in SCA6 followed by SCA3, whereas these abnormalities were less frequent in SCA1 and SCA2. Our data suggest that vestibulocerebellar, spinocerebellar and pontocerebellar circuits in SCA1, SCA2, SCA3 and SCA6 are functionally impaired to almost the same degree, but at different anatomical levels. The seemingly low prevalence of cerebellar oculomotor deficits in SCA1 and SCA2 is most probably related to the defective saccadic system in these disorders.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.