• Journal of neurochemistry · Jan 2015

    Phenylephrine enhances glutamate release in the medial prefrontal cortex through interaction with N-type Ca2+ channels and release machinery.

    • Fei Luo, Si-Hai Li, Hua Tang, Wei-Ke Deng, Yu Zhang, and Ying Liu.
    • Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, China.
    • J. Neurochem. 2015 Jan 1; 132 (1): 38-50.

    Abstractα1 -adrenoceptors (α1 -ARs) stimulation has been found to enhance excitatory processes in many brain regions. A recent study in our laboratory showed that α1 -ARs stimulation enhances glutamatergic transmission via both pre- and post-synaptic mechanisms in layer V/VI pyramidal cells of the rat medial prefrontal cortex (mPFC). However, a number of pre-synaptic mechanisms may contribute to α1 -ARs-induced enhancement of glutamate release. In this study, we blocked the possible post-synaptic action mediated by α1 -ARs to investigate how α1 -ARs activation regulates pre-synaptic glutamate release in layer V/VI pyramidal neurons of mPFC. We found that the α1 -ARs agonist phenylephrine (Phe) induced a significant enhancement of glutamatergic transmission. The Phe-induced potentiation was mediated by enhancing pre-synaptic glutamate release probability and increasing the number of release vesicles via a protein kinase C-dependent pathway. The mechanisms of Phe-induced potentiation included interaction with both glutamate release machinery and N-type Ca(2+) channels, probably via a pre-synaptic Gq /phospholipase C/protein kinase C pathway. Our results may provide a cellular and molecular mechanism that helps explain α1 -ARs-mediated influence on PFC cognitive functions. Alpha1 -adrenoceptor (α1 -ARs) stimulation has been reported to enhance glutamatergic transmission in layer V/VI pyramidal neurons of the rat medial prefrontal cortex (mPFC). We found that α1 -ARs agonist phenylephrine (Phe) increases pre-synaptic glutamate release probability and the number of released vesicles via interaction with both glutamate release machinery and N-type Ca(2+) channels. Our results may provide a cellular and molecular mechanism that helps explain α1 -ARs-mediated influence on PFC cognitive functions. Gq, Gq protein; PLC, phospholipase C; PKC, protein kinase C; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-d-aspartate; Glu, glutamate; Phe, phenylephrine.© 2014 International Society for Neurochemistry.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…