-
- Gabriel Venne, Brian J Rasquinha, Manuela Kunz, and Randy E Ellis.
- *Department Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada†Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada‡School of Computing, Queen's University, Kingston, Ontario, Canada§Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada.
- Spine. 2017 Apr 15; 42 (8): E466-E473.
Study DesignSerial histological investigation was performed on 10 cadaveric specimens and biomechanical tests were performed on five specimens, both focused on the tissue connexion between the rectus capitis posterior minor (RCPMi) and the spinal dura.ObjectiveThis study had two components: to clarify the microscopic structure of the tissue link between RCPMi and the dura mater, and to evaluate the mechanical role of this tissue complex.Summary Of Background DataDissection-based and imaging-based reports have suggested a connective tissue link between the RCPMi and the dura mater at the posterior-atlanto-occipital (PAO) level. Existence of this link, and properties, remain unclear.MethodsHistological investigation: RCPMi muscles, their bony attachments, PAO space, and adjacent spinal dura mater were resected from 10 cadavers. Tissues were subdivided into medial and lateral parts. Serial histological sections were prepared to cover maximum surface area; Masson trichrome stain was used to evaluate the tissue connection. Biomechanical investigation: individualized RCPMi muscles from five cadavers were detached from their origin. Each muscle was loaded incrementally up to 2 kg, with the cervical spine hyperextended. Using a structured light scanner, the dura mater was scanned for each loaded state. Comparison between unloaded and each loaded scanned surface quantified the displacement of the dura mater.ResultsHistological investigation confirmed the existence of a connective tissue link between the RCPMi and the dura mater. The biomechanical testing suggests that this tissue link complex can reduce the bulging of the dura mater into the spinal canal, caused during hyperextension, by 53.4% ± 6.9% under RCPMi loading.ConclusionThis histological investigation clarified the structure of the tissue link between the RCPMi and the dura mater. The biomechanical testing indicated a potential mechanical function of the RCPMi in regards to the spinal dura mater, which may include a stabilizing role of the dura mater during neck extension.Level Of EvidenceN/A.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.