• Chest · Aug 2017

    Multicenter Study Pragmatic Clinical Trial

    Circulating biologically active adrenomedullin (bio-ADM) predicts hemodynamic support requirement and mortality during sepsis.

    • Pietro Caironi, Roberto Latini, Joachim Struck, Oliver Hartmann, Andreas Bergmann, Giuseppe Maggio, Marco Cavana, Gianni Tognoni, Antonio Pesenti, Luciano Gattinoni, Serge Masson, and ALBIOS Study Investigators.
    • Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy; Dipartimento di Anestesia, Rianimazione, ed Emergenza Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
    • Chest. 2017 Aug 1; 152 (2): 312-320.

    BackgroundThe biological role of adrenomedullin (ADM), a hormone involved in hemodynamic homeostasis, is controversial in sepsis because administration of either the peptide or an antibody against it may be beneficial.MethodsPlasma biologically active ADM (bio-ADM) was assessed on days 1, 2, and 7 after randomization of 956 patients with sepsis or septic shock to albumin or crystalloids for fluid resuscitation in the multicenter Albumin Italian Outcome Sepsis trial. We tested the association of bio-ADM and its time-dependent variation with fluid therapy, vasopressor administration, organ failures, and mortality.ResultsPlasma bio-ADM on day 1 (median [Q1-Q3], 110 [59-198] pg/mL) was higher in patients with septic shock, associated with 90-day mortality, multiple organ failures and the average extent of hemodynamic support therapy (fluids and vasopressors), and serum lactate time course over the first week. Moreover, it predicted incident cardiovascular dysfunction in patients without shock at enrollment (OR [95% CI], 1.9 [1.4-2.5]; P < .0001, for an increase of 1 interquartile range of bio-ADM concentration). bio-ADM trajectory during the first week of treatment clearly predicted 90-day mortality after adjustment for clinically relevant covariates (hazard ratio [95% CI], 1.3 [1.2-1.4]; P < .0001), and its reduction below 110 pg/mL at day 7 was associated with a marked reduction in 90-day mortality. Changes over the first 7 days of bio-ADM concentrations were not dependent on albumin treatment.ConclusionsIn patients with sepsis, the circulating, biologically active form of ADM may help individualizing hemodynamic support therapy, while avoiding harmful effects. Its possible pathophysiologic role makes bio-ADM a potential candidate for future targeted therapies.Trial RegistryClinicalTrials.gov; No.: NCT00707122.Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.