• Critical care medicine · Aug 2017

    Randomized Controlled Trial

    The Utility of High-Fidelity Simulation for Training Critical Care Fellows in the Management of Extracorporeal Membrane Oxygenation Emergencies: A Randomized Controlled Trial.

    • Bishoy M Zakhary, Lily M Kam, Brian S Kaufman, and Kevin J Felner.
    • 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, New York, NY.2Department of Anesthesiology, New York University School of Medicine, New York, NY.3Division of Pulmonary and Critical Care Medicine, Department of Medicine, Veteran's Administration New York Harbor Healthcare System, New York, NY.
    • Crit. Care Med. 2017 Aug 1; 45 (8): 1367-1373.

    ObjectiveAlthough extracorporeal membrane oxygenation volume has increased, proficiency in the technology requires extensive training. We compared traditional water-drill-based extracorporeal membrane oxygenation training with simulation-based extracorporeal membrane oxygenation training with the hypothesis that simulation-based training is superior.DesignRandomized controlled trial.SettingAcademic medical center.SubjectsPulmonary/critical care fellows.InterventionsParticipants had a preintervention simulated extracorporeal membrane oxygenation emergency (Sim1-recirculation) then randomized into simulation and traditional groups. Each group participated in three teaching scenarios, via high-fidelity simulation or via water-drills. After 6 weeks and after 1 year, participants returned for two simulated extracorporeal membrane oxygenation emergencies (Sim2-pump failure and Sim3-access insufficiency). Sim2 was a case encountered during teaching, whereas Sim3 was novel. A critical action, necessary for resolution of each scenario, was preidentified for timing.Measurements And Main ResultsPrimary outcome was time required to perform critical actions. Twenty-one fellows participated in the study (simulation, 10; traditional, 11). Groups had similar scenario scores (p = 0.4) and times to critical action (p = 0.8) on Sim1. At 6 weeks, both groups had similar scenario scores on Sim2 (p = 0.5), but the simulation group scored higher on Sim3 (p = 0.03). Times to critical actions were shorter in the simulation group during Sim2 (127 vs 174 s, p = 0.004) and Sim3 (159 vs 300 s; p = 0.04). These findings persisted at 1 year.ConclusionsIn novice critical care fellows, simulation-based extracorporeal membrane oxygenation training is superior to traditional training. Benefits transfer to novel scenarios and are maintained over the long term. Further studies evaluating the utility of simulation in other learner groups and for maintenance of proficiency are required.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…