• Anesthesia and analgesia · May 2017

    Predictive Modeling of Massive Transfusion Requirements During Liver Transplantation and Its Potential to Reduce Utilization of Blood Bank Resources.

    • Aliaksei Pustavoitau, Maggie Lesley, Promise Ariyo, Asad Latif, April J Villamayor, Steven M Frank, Nicole Rizkalla, William Merritt, Andrew Cameron, Nabil Dagher, Benjamin Philosophe, Ahmet Gurakar, and Allan Gottschalk.
    • From the *Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; †Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and ‡Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
    • Anesth. Analg. 2017 May 1; 124 (5): 1644-1652.

    BackgroundPatients undergoing liver transplantation frequently but inconsistently require massive blood transfusion. The ability to predict massive transfusion (MT) could reduce the impact on blood bank resources through customization of the blood order schedule. Current predictive models of MT for blood product utilization during liver transplantation are not generally applicable to individual institutions owing to variability in patient population, intraoperative management, and definitions of MT. Moreover, existing models may be limited by not incorporating cirrhosis stage or thromboelastography (TEG) parameters.MethodsThis retrospective cohort study included all patients who underwent deceased-donor liver transplantation at the Johns Hopkins Hospital between 2010 and 2014. We defined MT as intraoperative transfusion of > 10 units of packed red blood cells (pRBCs) and developed a multivariable predictive model of MT that incorporated cirrhosis stage and TEG parameters. The accuracy of the model was assessed with the goodness-of-fit test, receiver operating characteristic analysis, and bootstrap resampling. The distribution of correct patient classification was then determined as we varied the model threshold for classifying MT. Finally, the potential impact of these predictions on blood bank resources was examined.ResultsTwo hundred three patients were included in the study. Sixty (29.6%) patients met the definition for MT and received a median (interquartile range) of 19.0 (14.0-27.0) pRBC units intraoperatively compared with 4.0 units (1.0-6.0) for those who did not satisfy the criterion for MT. The multivariable model for predicting MT included Model for End-stage Liver Disease score, whether simultaneous liver and kidney transplant was performed, cirrhosis stage, hemoglobin concentration, platelet concentration, and TEG R interval and angle. This model demonstrated good calibration (Hosmer-Lemeshow goodness-of-fit test P = .45) and good discrimination (c statistic: 0.835; 95% confidence interval, 0.781-0.888). A probability cutoff threshold of 0.25 was found to misclassify only 4 of 100 patients as unlikely to experience MT, with the majority such misclassifications within 4 units of the working definition for MT. For this threshold, a preoperative blood ordering schedule that allocated 6 units of pRBCs for those unlikely to experience MT and 15 for those who were likely to experience MT would prevent unnecessary crossmatching of 338 units/100 transplants.ConclusionsWhen clinical and laboratory parameters are included, a model predicting intraoperative MT in patients undergoing liver transplantation is sufficiently accurate that its predictions could guide the blood order schedule for individual patients based on institutional data, thereby reducing the impact on blood bank resources. Ongoing evaluation of model accuracy and transfusion practices is required to ensure continuing performance of the predictive model.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.