• J. Orthop. Res. · Oct 2012

    Establishment and characterization of a novel chordoma cell line: CH22.

    • Xianzhe Liu, Gunnlager Petur Nielsen, Andrew E Rosenberg, Peter R Waterman, Wen Yang, Edwin Choy, Slim Sassi, Shuhua Yang, David C Harmon, Cao Yang, Joseph H Schwab, Eisuke Kobayashi, Henry J Mankin, Ramnik Xavier, Ralph Weissleder, Zhenfeng Duan, and Francis J Hornicek.
    • Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
    • J. Orthop. Res. 2012 Oct 1; 30 (10): 1666-73.

    AbstractChordoma is a rare primary malignant bone tumor and there exist only a few established human chordoma cell lines. The scarcity of robust chordoma cell lines has limited the ability to study this tumor. In this report, we describe the establishment of a novel chordoma cell line and characterize its in vitro and in vivo behaviors. The tumor tissue was isolated from a patient with recurrent chordoma of the sacrum. After 6 months in culture, the chordoma cell line, referred here as CH22, was established. Microscopic analysis of two-dimensional culture confirmed that the CH22 cells exhibited a typical vacuolated cytoplasm similar to the well-established chordoma cell line U-CH1. Electron microscopy showed cohesive cells with numerous surface filopodia, pockets of glycogen and aggregates of intermediate tonofilaments in cytoplasm. Three-dimensional culture revealed that the CH22 cells could grow and form clusters by day 8. The MTT assays demonstrated that, compared with sensitive osteosarcoma cell lines, CH22 cells were relatively resistant to conventional chemotherapeutic drugs. Western blotting and immunofluorescence analysis confirmed that the CH22 cells expressed brachyury, vimentin, and cytokeratin. Finally, histological analysis of CH22 xenograft tumor tissues demonstrated the appearance of physaliphorous cells and positive staining of brachyury, cytokeratin, and S100. By CT and MRI, imaging xenografts showed the typical appearances seen in human chordomas. These findings suggest that the established novel human chordoma cell line CH22 and its tumorigenecity in SCID nude mice may serve as an important model for studying chordoma cell biology and the development of new therapeutic modalities.Copyright © 2012 Orthopaedic Research Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.