• Journal of neurotrauma · Nov 2017

    Monitoring of optimal cerebral perfusion pressure in traumatic brain injured patients using a multi-window weighting algorithm.

    • Xiuyun Liu, Natasha M Maurits, AriesMarcel J HMJH1 Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom .3 Department of Intensive Care (MJHA), University of Maastricht, Maa, Marek Czosnyka, Ari Ercole, Joseph Donnelly, Danilo Cardim, Dong-Joo Kim, Celeste Dias, Manuel Cabeleira, and Peter Smielewski.
    • 1 Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge , Cambridge, United Kingdom .
    • J. Neurotrauma. 2017 Nov 15; 34 (22): 3081-3088.

    AbstractMethods to identify an autoregulation guided "optimal" cerebral perfusion pressure (CPPopt) for traumatic brain injury patients (TBI) have been reported through several studies. An important drawback of existing methodology is that CPPopt can be calculated only in ∼50-60% of the monitoring time. In this study, we hypothesized that the CPPopt yield and the continuity can be improved significantly through application of a multi-window and weighting calculation algorithm, without adversely affecting preservation of its prognostic value. Data of 526 severe TBI patients admitted between 2003 and 2015 were studied. The multi-window CPPopt calculation was based on automated curve fitting in pressure reactivity index (PRx)-CPP plots using data from 36 increasing length time windows (2-8 h). The resulting matrix of CPPopts was then averaged in a weighted manner. The yield, continuity, and stability of CPPopt were studied. The difference between patients' actual CPP and CPPopt (ΔCPP) was calculated and the association with outcome was analyzed. Overall, the multi-window method demonstrated more continuous and stable presentation of CPPopt in this cohort. The new method resulted in a mean (±SE) CPPopt yield of 94% ± 2.1%, as opposed to the previous single-window-based CPPopt yield of 51% ± 0.94%. The stability of CPPopt across the whole monitoring period was significantly improved by using the new algorithm (p < 0.001). The relationship between ΔCPP according to the multi-window algorithm and outcome was similar to that for CPPopt calculated on the basis of a single window. In conclusion, this study validates the use of a new multi-window and weighting algorithm for significant improvement of CPPopt yield in TBI patients. This methodological improvement is essential for its clinical application in future CPPopt trials.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.