• Minerva anestesiologica · Aug 2017

    Review

    Cerebral autoregulation monitoring in acute traumatic brain injury: what's the evidence?

    • Leanne A Calviello, Joseph Donnelly, Frederick A Zeiler, Eric P Thelin, Peter Smielewski, and Marek Czosnyka.
    • Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK - leannecalviello@gmail.com.
    • Minerva Anestesiol. 2017 Aug 1; 83 (8): 844-857.

    AbstractCerebral autoregulation is conceptualized as a vascular self-regulatory mechanism within the brain. Controlled by elusive relationships between various biophysical processes, it functions to protect the brain against potential damages caused by sudden changes in cerebral perfusion pressures and flow. Following events such as traumatic brain injuries (TBI), autoregulation may be compromised, potentially leading to an unfavorable outcome. In spite of its complexity, autoregulation has been able to be quantified non-invasively within the neuro-critical care setting with the aid of transcranial Doppler. This information is interpreted particularly through calculated derived indices based on commonly-monitored input signals such as arterial blood pressure and intracranial pressure (i.e. Pressure Reactivity Index [PRx], Mean Flow Index, etc.). For example, PRx values that trend towards positive numbers are correlated with unfavorable outcome. These predictors are primarily surrogate markers of cerebral hemodynamic activity, although suggesting robust correlations between these indices and patient outcome. This review of the literature seeks to explain the methodology behind the calculations of various measures of autoregulation in adult patients suffering from traumatic brain injuries, and how they can interact with one another to both create larger effects on patient outcome and general outcome prediction models. Insight into the driving forces behind cerebral autoregulation is imperative for guiding both clinical decision-making and global treatment protocols for neuro-critically ill patients. The evidence that autoregulation-oriented therapy may improve outcome after TBI is still oscillating around Level III.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.