• Cochrane Db Syst Rev · Mar 2016

    Review Meta Analysis

    Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke.

    • Bernhard Elsner, Joachim Kugler, Marcus Pohl, and Jan Mehrholz.
    • Department of Public Health, Dresden Medical School, Technical University Dresden, Fetscherstr. 74, Dresden, Sachsen, Germany, 01307.
    • Cochrane Db Syst Rev. 2016 Mar 21; 3 (3): CD009645CD009645.

    BackgroundStroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength and cognitive abilities (including spatial neglect) after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve ADL performance, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke.ObjectivesTo assess the effects of tDCS on ADLs, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke.Search MethodsWe searched the Cochrane Stroke Group Trials Register (February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library; 2015, Issue 2), MEDLINE (1948 to February 2015), EMBASE (1980 to February 2015), CINAHL (1982 to February 2015), AMED (1985 to February 2015), Science Citation Index (1899 to February 2015) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers.Selection CriteriaThis is the update of an existing review. In the previous version of this review we focused on the effects of tDCS on ADLs and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADLs, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention.Data Collection And AnalysisTwo review authors independently assessed trial quality and risk of bias (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports.Main ResultsWe included 32 studies involving a total of 748 participants aged above 18 with acute, postacute or chronic ischaemic or haemorrhagic stroke. We also identified 55 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes.We found nine studies with 396 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADLs after stroke. We found evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.24, 95% confidence interval (CI) 0.03 to 0.44; inverse variance method with random-effects model; moderate quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADLs at the end of follow-up, and found improved ADL performance (SMD 0.31, 95% CI 0.01 to 0.62; inverse variance method with random-effects model; moderate quality evidence). However, the results did not persist in a sensitivity analysis including only trials of good methodological quality.One of our secondary outcome measures was upper extremity function: 12 trials with a total of 431 participants measured upper extremity function at the end of the intervention period, revealing no evidence of an effect in favour of tDCS (SMD 0.01, 95% CI -0.48 to 0.50 for studies presenting absolute values (low quality evidence) and SMD 0.32, 95% CI -0.51 to 1.15 (low quality evidence) for studies presenting change values; inverse variance method with random-effects model). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified four studies with a total of 187 participants (absolute values) that showed no evidence of an effect (SMD 0.01, 95% CI -0.48 to 0.50; inverse variance method with random-effects model; low quality evidence). Ten studies with 313 participants reported outcome data for muscle strength at the end of the intervention period, but in the corresponding meta-analysis there was no evidence of an effect. Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect.In six of 23 studies (26%), dropouts, adverse events or deaths that occurred during the intervention period were reported, and the proportions of dropouts and adverse events were comparable between groups (risk difference (RD) 0.01, 95% CI -0.02 to 0.03; Mantel-Haenszel method with random-effects model; low quality evidence; analysis based only on studies that reported either on dropouts, or on adverse events, or on both). However, this effect may be underestimated due to reporting bias.Authors' ConclusionsAt the moment, evidence of very low to moderate quality is available on the effectiveness of tDCS (anodal/cathodal/dual) versus control (sham/any other intervention) for improving ADL performance after stroke. However, there are many ongoing randomised trials that could change the quality of evidence in the future. Future studies should particularly engage those who may benefit most from tDCS after stroke and in the effects of tDCS on upper and lower limb function, muscle strength and cognitive abilities (including spatial neglect). Dropouts and adverse events should be routinely monitored and presented as secondary outcomes. They should also address methodological issues by adhering to the Consolidated Standards of Reporting Trials (CONSORT) statement.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.