-
J. Thorac. Cardiovasc. Surg. · Aug 2017
Hypoxia modulates cell migration and proliferation in placenta-derived mesenchymal stem cells.
- Li Li, Prashant Kumar Jaiswal, Georges Makhoul, Rishi Jurakhan, Kaviyanka Selvasandran, Khalid Ridwan, and Renzo Cecere.
- Division of Experimental Surgery, McGill University, Montreal, Quebec, Canada.
- J. Thorac. Cardiovasc. Surg. 2017 Aug 1; 154 (2): 543-552.e3.
ObjectivesFor more than a decade, stem cells isolated from different tissues have been evaluated in cell therapy. Among them, the human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were investigated extensively in the treatment of myocardial infarction. Recently, the human placenta-derived mesenchymal stem cells (hPD-MSCs), which are readily available from a biological waste, appear to be a viable alternative to hBM-MSCs.MethodsC-X-C chemokine receptor type 4 (CXCR4) gene expression and localization were detected and validated in hPD-MSCs and hBM-MSCs via polymerase chain reaction and immunofluorescence. Subsequently, cell culture conditions for CXCR4 expression were optimized in stromal-derived factor-1 alpha (SDF1-α), glucose, and cobalt chloride (CoCl2) by the use of cell viability, proliferation, and migration assays. To elucidate the cell signaling pathway, protein expression of CXCR4, hypoxia-inducible factor-1α, interleukin-6, Akt, and extracellular signal-regulated kinase were analyzed by Western blot. CXCR4-positive cells were sorted and analyzed by florescence-activated cell sorting.ResultsCXCR4 was expressed on both hPD-MSCs and hBM-MSCs at the basal level. HPD-MSCs were shown to have a greater sensitivity to SDF-1α-dependent cell migration compared with hBM-MSCs. In addition, CXCR4 expression was significantly greater in both hPD-MSCs and hBM-MSCs with SDF-1α or CoCl2-induced hypoxia treatment. However, CXCR4+ hPD-MSCs population increased by 10-fold in CoCl2-induced hypoxia. In contrast, only a 2-fold increase was observed in the CXCR4+ hBM-MSCs population in similar conditions. After CoCl2-induced hypoxia, the CXCR4/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway was activated prominently in hPD-MSCs, whereas in hBM-MSCs, the CXCR4/phosphatidylinositol 3-kinase/Akt pathway was triggered.ConclusionsOur current results suggest that hPD-MSCs could represent a viable and effective alternative to hBM-MSCs for translational studies in cardiocellular repair.Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.