• Cell transplantation · Jan 2013

    ABCG2 protects kidney side population cells from hypoxia/reoxygenation injury through activation of the MEK/ERK pathway.

    • Wei-Hui Liu, Hong-Bao Liu, Da-Kuan Gao, Guan-Qun Ge, Peng Zhang, Shi-Ren Sun, Han-Min Wang, and Shui-Bing Liu.
    • Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
    • Cell Transplant. 2013 Jan 1; 22 (10): 1859-68.

    AbstractBreast cancer resistance protein 1 (BCRP1/ABCG2) is used to identify the side population (SP) within a population of cells, which is enriched for stem and progenitor cells in different tissues. Here, we investigated the role of extracellular signal-regulated kinase (ERK) 1/2 in the signaling mechanisms underlying ischemic/hypoxic conditions in kidney SP cells. Kidney SP cells were isolated using Hoechst 33342 dye-mediated fluorescein-activated cell sorting and then incubated under hypoxia/reoxygenation (H/R) with or without verapamil, a selective BCRP1/ABCG2 inhibitor. ABCG2 expression, ERK activity, cell viability, metabolic activity, and membrane damage were tested after H/R treatment. To evaluate the role of ERK 1/2 on the expression and function of ABCG2, the expression of mitogen-activated protein kinase (MAPK)/ERK kinase (MEK), which preferentially activates ERK, was upregulated by transfection with the recombinant sense expression vector pcDNA3.1-MEK and downregulated by pretreatment with U0126, a specific MEK inhibitor. We found that hypoxia activated ERK activity in the kidney SP cells but not in non-SP cells both in vitro and in vivo. Overexpression of MEK mimicked hypoxia-induced ABCG2 expression. Contrarily, U0126 inhibited hypoxia- and MEK-upregulated ABCG2 expression. Furthermore, H/R induced significant increases in nuclear, metabolic, and membrane damage in both SP cells and non-SP cells; however, this H/R-induced cytotoxicity was much more severe in non-SP cells than in SP cells. Notably, the viability of kidney SP cells was enhanced by MEK overexpression and inhibited by U0126. Verapamil treatment reversed MEK-induced viability of kidney SP cells. When administered systemically into animals with renal ischemia/reperfusion injury, the SP cells significantly improved renal function, accelerated mitogenic response, and reduced cell apoptosis. However, this improved therapeutic potential of SP cells was significantly reduced by pretreatment with verapamil. Collectively, these findings provide evidence for a crucial role for the MEK/ERK-ABCG2 pathway in protecting kidney SP cells from ischemic/hypoxic injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.