-
J Clin Monit Comput · Jun 2018
Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
- T Y Abay and P A Kyriacou.
- School of Mathematics, Computer Sciences and Engineering, City, University of London, London, UK. Tomas.Ysehak-Abay.1@city.ac.uk.
- J Clin Monit Comput. 2018 Jun 1; 32 (3): 447-455.
AbstractPhotoplethysmography (PPG) is an optical technique that measures blood volume variations. The main application of dual-wavelength PPG is pulse oximetry, in which the arterial oxygen saturation (SpO[Formula: see text]) is calculated noninvasively. However, the PPG waveform contains other significant physiological information that can be used in conjunction to SpO[Formula: see text] for the assessment of oxygenation and blood volumes changes. This paper investigates the use of near infrared spectroscopy (NIRS) processing techniques for extracting relative concentration changes of oxygenated ([Formula: see text]HbO[Formula: see text]), reduced ([Formula: see text]HHb) and total haemoglobin ([Formula: see text]tHb) from dual-wavelength PPG signals during intermittent pressure-increasing vascular occlusions. A reflectance PPG sensor was attached on the left forearm of nineteen (n = 19) volunteers, along with a reference NIRS sensor positioned on the same forearm, above the left brachioradialis. The investigation protocol consisted of seven intermittent and pressure-increasing vascular occlusions. Relative changes in haemoglobin concentrations were obtained by applying the modified Beer-Lambert law to PPG signals, while oxygenation changes were estimated by the difference between red and infrared attenuations of DC PPGs (A[Formula: see text] = [Formula: see text]A[Formula: see text] - [Formula: see text]A[Formula: see text]) and by the conventional SpO[Formula: see text]. The [Formula: see text]HbO[Formula: see text], [Formula: see text]HHb, [Formula: see text]tHb from the PPG signals indicated significant changes in perfusion induced by either partial and complete occlusions (p < 0.05). The trends in the variables extracted from PPG showed good correlation with the same parameters measured by the reference NIRS monitor. Bland and Altman analysis of agreement between PPG and NIRS showed underestimation of the magnitude of changes by the PPG. A[Formula: see text] indicated significant changes for occlusion pressures exceeding 20 mmHg (p < 0.05) and correlation with tissue oxygenation changes measured by NIRS, while SpO[Formula: see text] had significant changes after 40 mmHg (p < 0.05). Relative changes in haemoglobin concentrations can be estimated from PPG signals and they showed a good level of accuracy in the detection of perfusion and oxygenation changes induced by different degrees of intermittent vascular occlusions. These results can open up to new applications of the PPG waveform in the detection of blood volumes and oxygenation changes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.