• Ann Phys Rehabil Med · Feb 2015

    Brain-machine interface (BMI) in paralysis.

    • U Chaudhary, N Birbaumer, and M R Curado.
    • Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany.
    • Ann Phys Rehabil Med. 2015 Feb 1; 58 (1): 9-13.

    IntroductionBrain-machine interfaces (BMIs) use brain activity to control external devices, facilitating paralyzed patients to interact with the environment. In this review, we focus on the current advances of non-invasive BMIs for communication in patients with amyotrophic lateral sclerosis (ALS) and for restoration of motor impairment after severe stroke.Bmi For Als PatientsBMI represents a promising strategy to establish communication with paralyzed ALS patients as it does not need muscle engagement for its use. Distinct techniques have been explored to assess brain neurophysiology to control BMI for patients' communication, especially electroencephalography (EEG) and more recently near-infrared spectroscopy (NIRS). Previous studies demonstrated successful communication with ALS patients using EEG-BMI when patients still showed residual eye control, but patients with complete paralysis were unable to communicate with this system. We recently introduced functional NIRS (fNIRS)-BMI for communication in ALS patients in the complete locked-in syndrome (i.e., when ALS patients are unable to engage any muscle), opening new doors for communication in ALS patients after complete paralysis.Bmi For Stroke Motor RecoveryIn addition to assisted communication, BMI is also being extensively studied for motor recovery after stroke. BMI for stroke motor recovery includes intensive BMI training linking brain activity related to patient's intention to move the paretic limb with the contingent sensory feedback of the paretic limb movement guided by assistive devices. BMI studies in this area are mainly focused on EEG- or magnetoencephalography (MEG)-BMI systems due to their high temporal resolution, which facilitates online contingency between intention to move and sensory feedback of the intended movement. EEG-BMI training was recently demonstrated in a controlled study to significantly improve motor performance in stroke patients with severe paresis. Neural basis for BMI-induced restoration of motor function and perspectives for future BMI research for stroke motor recovery are discussed.Copyright © 2015 Elsevier Masson SAS. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.