-
Reg Anesth Pain Med · Jul 2017
Biochemical and Pharmacological Characterization of a Mice Model of Complex Regional Pain Syndrome.
- Vaskar Das, Jeffrey S Kroin, Mario Moric, and Asokumar Buvanendran.
- From the Department of Anesthesiology, Rush University Medical Center, Chicago, IL.
- Reg Anesth Pain Med. 2017 Jul 1; 42 (4): 507-516.
Background And ObjectivesComplex regional pain syndrome is a challenging disease to treat. Recently, a mouse fracture model of complex regional pain syndrome has been developed that has many signs of the clinical syndrome. However, many aspects of the sensory neuron biochemistry and behavioral and pharmacological characterization of this model remain to be clarified.MethodsMice were randomly assigned to fracture/cast or control (naive) groups. Fracture/cast mice underwent a closed distal tibia facture, with hindlimb wrapped in casting tape for 3 weeks. After cast removal, mice were tested for mechanical allodynia, burrowing behavior, and motor ability over a 12-week period. Protein immunohistochemistry was performed for substance P, calcitonin gene-related peptide, tropomyosin receptor kinase A, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1, colocalized in neurons, in the ipsilateral lumbar dorsal root ganglia (DRGs). Analgesic drugs were tested for pain-relieving efficacy.ResultsMechanical allodynia was greater in the ipsilateral hindpaw (P = 0.0002) in the fracture/cast group versus the control group, over the 3- to 12-week period. The amount of burrowing material removed was decreased (P = 0.0026), and there were deficits in spontaneous motor-rearing behavior (P = 0.018). Immunostaining of substance P, calcitonin gene-related peptide, Trk A receptor, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1 all demonstrated up-regulation in the DRGs of fracture mice versus controls (all P < 0.05). Morphine, pregabalin, ketamine, acetaminophen, and dexamethasone transiently increased force withdrawal thresholds on the ipsilateral (fracture) side and improved burrowing activity after injection (all P < 0.05). Ketorolac improved only burrowing.ConclusionsPersistent pain-related behavior was demonstrated in this mouse fracture/cast model with wide-scale DRG up-regulation of pain mediators. Antihyperalgesic drugs reduced mechanical allodynia and improved burrowing.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.