• Critical care medicine · Oct 1993

    Comparative Study

    Predictability of creatinine clearance estimates in critically ill patients.

    • S Robert, B J Zarowitz, E L Peterson, and F Dumler.
    • Ecole de Pharmacie, Université Laval and Hôtel-Dieu de Québec Hospital, PQ, Canada.
    • Crit. Care Med. 1993 Oct 1; 21 (10): 1487-95.

    Objectivesa) To evaluate the predictive ability of different creatinine clearance methods as compared with the criterion standard, inulin clearance; and b) to determine which of the predictive methods yields the most accurate estimation of creatinine clearance.DesignProspective study.SettingMedical intensive care unit (ICU) of a university-affiliated tertiary care hospital.InterventionsGlomerular filtration rate was measured by the criterion standard, inulin clearance.PatientsTwenty mechanically ventilated adults.MeasurementsRenal function was assessed by the following procedures: inulin clearance using a standard protocol, 30-min creatinine clearance, 24-hr creatinine clearance, and creatinine clearance estimates by the Cockcroft-Gault equation. Ideal body weight, total body weight or lean body mass with actual serum creatinine or serum creatinine concentration corrected to 1 mg/dL (85 mumol/L) in cachectic patients were sequentially incorporated into the Cockcroft-Gault equation.ResultsThe Cockcroft-Gault equation, using ideal body weight and the corrected serum creatinine concentration, was the best predictor of inulin clearance with the smallest bias (9.7 +/- 8.6, 95% confidence interval 5.7 to 13.8). The bias encountered with the 30-min creatinine clearance was not different from that value with the 24-hr creatinine clearance (21.6 +/- 33.0, 95% confidence interval 6.2 to 37.1 vs. 25.4 +/- 28.3, 95% confidence interval 11.8 to 42.9). Good correlations existed between inulin clearance and the Cockcroft-Gault equation, using ideal body weight and the corrected serum creatinine concentration (r2 = .81; p = .0001), as well as between inulin clearance and the Cockcroft-Gault equation, using the lower of ideal or total body weight and the higher of the actual serum creatinine concentration or corrected serum creatinine (r2 = .75; p = .0001). The 30-min creatinine clearance and the 24-hr creatinine clearance had poorer agreement with inulin clearance. The incorporation of a corrected serum creatinine value into the Cockcroft-Gault equation consistently led to better predictions and higher correlation coefficients.ConclusionsThe utilization of the Cockcroft-Gault equation as used clinically (the lower of ideal or total body weight and the higher of actual serum creatinine or corrected serum creatinine concentration to 1 mg/dL [85 mumol/L]) results in more accurate predictions of glomerular filtration rate in the medical, critically ill patient than urine creatinine clearance measures. If creatinine clearance measures are used, the 30-min collection provided results not different from those results obtained with 24-hr urinary collections.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.