• Anesthesia and analgesia · Dec 2017

    Clinical Trial Observational Study

    The Evaluation of a Noninvasive Respiratory Volume Monitor in Pediatric Patients Undergoing General Anesthesia.

    • Andrea D Gomez-Morad, Joseph P Cravero, Brian C Harvey, Rachel Bernier, Erin Halpin, Brian Walsh, and Viviane G Nasr.
    • Anesth. Analg. 2017 Dec 1; 125 (6): 1913-1919.

    BackgroundPediatric patients following surgery are at risk for respiratory compromise such as hypoventilation and hypoxemia depending on their age, comorbidities, and type of surgery. Quantitative measurement of ventilation in nonintubated infants/children is a difficult and inexact undertaking. Current respiratory assessment in nonintubated patients relies on oximetry data, respiratory rate (RR) monitors, and subjective clinical assessment, but there is no objective measure of respiratory parameters that could be utilized to predict early respiratory compromise. New advances in technology and digital signal processing have led to the development of an impedance-based respiratory volume monitor (RVM, ExSpiron, Respiratory Motion, Inc, Waltham, MA). The RVM has been shown to provide accurate real-time, continuous, noninvasive measurements of tidal volume (TV), minute ventilation (MV), and RR in adult patients.In this prospective observational study, our primary aim was to determine whether the RVM accurately measures TV, RR, and MV in pediatric patients.MethodsA total of 72 pediatric patients (27 females, 45 males), ASA I to III, undergoing general anesthesia with endotracheal intubation were enrolled. After endotracheal intubation, continuous data of MV, TV, and RR were recorded from the RVM and an in-line monitoring spirometer (NM3 monitor, Phillips Healthcare). RVM and NM3 measurements of MV, TV, and RR were compared during a 10-minute period prior to the incision ("Presurgery") and a 10-minute period after the end of surgery ("Postsurgery"). Relative errors were calculated over 1-minute segment within each 10-minute period. Bias, precision, and accuracy were calculated using Bland-Altman analyses and paired-difference equivalence tests were performed.ResultsCombined across the Presurgery and Postsurgery periods, the RVM's mean measurement bias (RVM - NM3 measurement) for MV was -3.8% (95% limits of agreement) (±1.96 SD): (-19.9% to 12.2%), for TV it was -4.9 (-21.0% to 11.3%), and for RR it was 1.1% (-4.1% to 6.2%). The mean measurement accuracies for MV, TV, and RR were 11.9%, 12.0%, and 4.2% (0.6 breaths/min), respectively. Note that lower accuracy numbers correspond to more accurate RVM measurements. The equivalence tests rejected the null hypothesis that the RVM and NM3 have different mean values and conclude with 90% power that the measurements of MV, TV, and RR from the RVM and NM3 are equivalent within ±10%.ConclusionsOur data indicate acceptable agreement between RVM and NM3 measurements in pediatric mechanically-ventilated patients. Future studies assessing the capability of the RVM to detect respiratory compromise in other clinical settings are needed.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.