-
Comparative Study
Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study.
- Iris D Kilsdonk, Laura E Jonkman, Roel Klaver, Susanne J van Veluw, Jaco J M Zwanenburg, Joost P A Kuijer, Petra J W Pouwels, Jos W R Twisk, Mike P Wattjes, Peter R Luijten, Frederik Barkhof, and Jeroen J G Geurts.
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands i.kilsdonk@vumc.nl.
- Brain. 2016 May 1; 139 (Pt 5): 1472-81.
AbstractThe relevance of cortical grey matter pathology in multiple sclerosis has become increasingly recognized over the past decade. Unfortunately, a large part of cortical lesions remain undetected on magnetic resonance imaging using standard field strength. In vivo studies have shown improved detection by using higher magnetic field strengths up to 7 T. So far, a systematic histopathological verification of ultra-high field magnetic resonance imaging pulse sequences has been lacking. The aim of this study was to determine the sensitivity of 7 T versus 3 T magnetic resonance imaging pulse sequences for the detection of cortical multiple sclerosis lesions by directly comparing them to histopathology. We obtained hemispheric coronally cut brain sections of 19 patients with multiple sclerosis and four control subjects after rapid autopsy and formalin fixation, and scanned them using 3 T and 7 T magnetic resonance imaging systems. Pulse sequences included T1-weighted, T2-weighted, fluid attenuated inversion recovery, double inversion recovery and T2*. Cortical lesions (type I-IV) were scored on all sequences by an experienced rater blinded to histopathology and clinical data. Staining was performed with antibodies against proteolipid protein and scored by a second reader blinded to magnetic resonance imaging and clinical data. Subsequently, magnetic resonance imaging images were matched to histopathology and sensitivity of pulse sequences was calculated. Additionally, a second unblinded (retrospective) scoring of magnetic resonance images was performed. Regardless of pulse sequence, 7 T magnetic resonance imaging detected more cortical lesions than 3 T. Fluid attenuated inversion recovery (7 T) detected 225% more cortical lesions than 3 T fluid attenuated inversion recovery (Z = 2.22, P < 0.05) and 7 T T2* detected 200% more cortical lesions than 3 T T2* (Z = 2.05, P < 0.05). Sensitivity of 7 T magnetic resonance imaging was influenced by cortical lesion type: 100% for type I (T2), 11% for type II (FLAIR/T2), 32% for type III (T2*), and 68% for type IV (T2). We conclude that ultra-high field 7 T magnetic resonance imaging more than doubles detection of cortical multiple sclerosis lesions, compared to 3 T magnetic resonance imaging. Unfortunately, (subpial) cortical pathology remains more extensive than 7 T magnetic resonance imaging can reveal.© The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.