-
- Frank Scali, Matthew E Pontell, Lance G Nash, and Dennis E Enix.
- American University of the Caribbean School of Medicine, 1 University Drive at Jordan Rd, Cupecoy, St. Maarten. Electronic address: drfrankscali@gmail.com.
- Spine J. 2015 Nov 1; 15 (11): 2417-24.
Background ContextOver the past two decades, soft-tissue structures communicating with the dura mater within the epidural space have become the focus of many anatomical and histopathologic studies. The relationship between these bridging structures has yet to be evaluated in situ.PurposeThis is the first study that used E12 sheet plastination to investigate the epidural space of the upper cervical spine in situ and its associated bridging structures. Given the complexity of this space, this study may prove useful to clinical anatomists and surgeons who operate within this region.Study DesignAnatomical and microscopic analyses of structures that communicate with the dura mater within the upper cervical region were carried out.MethodsGross dissection in conjunction with microscopy was used to evaluate bridging communications of the upper cervical spine in 10 cadavers. To evaluate the in situ arrangement of these structures, E12 sheet plastination was used on 13 cadavers.ResultsIn all 23 specimens, suboccipital fascia coalesced with the dorsal meningovertebral ligament of the atlas, and inserted directly into the posterior surface of the dura as a single but separable laminar layer. At the level of the atlantoaxial interspace, suboccipital fasciae combined and coalesced with the dorsal meningovertebral ligament of the atlas and the axis. These structures inserted into the posterior surface of the dura mater as a single but separable layer. Microscopy validated these findings and E12 sheet plastination revealed the in situ organization of these soft-tissue structures. E12 sheet plastination also provided new information on dural arrangement at the craniocervical junction, which was observed to be composed of periosteum from the occiput but consisted mainly of deep fascia from the rectus capitis posterior minor.ConclusionsE12 sheet plastination has provided in situ visualization of bridging structures within the cervical epidural space and offers new insight into these structures, as well as the composition and arrangement of the posterior atlantooccipital membrane and cerebrospinal dura at the craniocervical junction. This study aims to expand on the anatomical understanding of the upper cervical region while defining structures that may reduce neurosurgical complications, and aid in the understanding of the pathophysiology of certain neurogenic disorders.Copyright © 2015 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.