-
- Stefan J Teipel, Gene E Alexander, Marc B Schapiro, Hans-Jürgen Möller, Stanley I Rapoport, and Harald Hampel.
- Alzheimer Memorial Center and Geriatric Psychiatry Branch, Dementia and Neuroimaging Section, Department of Psychiatry, Ludwig-Maximilian University, Nussbaumstrasse 7, 80336 Munich, Germany. stefan.teipel@med.uni-muenchen.de
- Brain. 2004 Apr 1; 127 (Pt 4): 811-24.
AbstractAgeing in Down's syndrome is accompanied by amyloid and neurofibrillary pathology the distribution of which replicates pathological features of Alzheimer's disease. With advancing age, an increasing proportion of Down's syndrome subjects >40 years old develop progressive cognitive impairment, resembling the cognitive profile of Alzheimer's disease. Based on these findings, Down's syndrome has been proposed as a model to study the predementia stages of Alzheimer's disease. Using an interactive anatomical segmentation technique and volume-of-interest measurements of MRI, we showed recently that non-demented Down's syndrome adults had significantly reduced hippocampus, entorhinal cortex and corpus callosum sizes with increasing age. In this study, we applied the automated and objective technique of voxel-based morphometry, implemented in SPM99, to the analysis of structural MRI from 27 non-demented Down's syndrome adults (mean age 41.1 years, 15 female). Regional grey matter volume was decreased with advancing age in bilateral parietal cortex (mainly the precuneus and inferior parietal lobule), bilateral frontal cortex with left side predominance (mainly middle frontal gyrus), left occipital cortex (mainly lingual cortex), right precentral and left postcentral gyrus, left transverse temporal gyrus, and right parahippocampal gyrus. The reductions were unrelated to gender, intracranial volume or general cognitive function. Grey matter volume was relatively preserved in subcortical nuclei, periventricular regions, the basal surface of the brain (bilateral orbitofrontal and anterior temporal) and the anterior cingulate gyrus. Our findings suggest grey matter reductions in allocortex and association neocortex in the predementia stage of Down's syndrome. The most likely substrate of these changes is alterations or loss of allocortical and neocortical neurons due to Alzheimer's disease-type pathology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.