-
Randomized Controlled Trial
Dexmedetomidine pharmacokinetic-pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation.
- P J Colin, L N Hannivoort, D J Eleveld, K M E M Reyntjens, A R Absalom, VereeckeH E MHEMDepartment of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands., and StruysM M R FMMRFDepartment of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.Department of Anaesthesia and Peri-operative Medicine, Ghent University, Ghent, Belgium..
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Br J Anaesth. 2017 Aug 1; 119 (2): 200-210.
BackgroundDexmedetomidine, a selective α 2 -adrenoreceptor agonist, has unique characteristics, such as maintained respiratory drive and production of arousable sedation. We describe development of a pharmacokinetic-pharmacodynamic model of the sedative properties of dexmedetomidine, taking into account the effect of stimulation on its sedative properties.MethodsIn a two-period, randomized study in 18 healthy volunteers, dexmedetomidine was delivered in a step-up fashion by means of target-controlled infusion using the Dyck model. Volunteers were randomized to a session without background noise and a session with pre-recorded looped operating room background noise. Exploratory pharmacokinetic-pharmacodynamic modelling and covariate analysis were conducted in NONMEM using bispectral index (BIS) monitoring of processed EEG.ResultsWe found that both stimulation at the time of Modified Observer's Assessment of Alertness/Sedation (MOAA/S) scale scoring and the presence or absence of ambient noise had an effect on the sedative properties of dexmedetomidine. The stimuli associated with MOAA/S scoring increased the BIS of sedated volunteers because of a transient 170% increase in the effect-site concentration necessary to reach half of the maximal effect. In contrast, volunteers deprived of ambient noise were more resistant to dexmedetomidine and required, on average, 32% higher effect-site concentrations for the same effect as subjects who were exposed to background operating room noise.ConclusionsThe new pharmacokinetic-pharmacodynamic models might be used for effect-site rather than plasma concentration target-controlled infusion for dexmedetomidine in clinical practice, thereby allowing tighter control over the desired level of sedation.Clinical Trial RegistrationNCT01879865.© The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.