• Critical care medicine · Nov 2017

    Predicting Fluid Responsiveness in Critically Ill Patients by Using Combined End-Expiratory and End-Inspiratory Occlusions With Echocardiography.

    • Mathieu Jozwiak, François Depret, Jean-Louis Teboul, Jean-Emmanuel Alphonsine, Christopher Lai, Christian Richard, and Xavier Monnet.
    • 1Hôpitaux universitaires Paris-Sud, Hôpital de Bicêtre, service de réanimation médicale, Le Kremlin-Bicêtre, France. 2Inserm UMR S_999, Univ Paris-Sud, Le Kremlin-Bicêtre, France.
    • Crit. Care Med. 2017 Nov 1; 45 (11): e1131-e1138.

    ObjectivesFirst, we aimed at assessing whether fluid responsiveness is predicted by the effects of an end-expiratory occlusion on the velocity-time integral of the left ventricular outflow tract. Second, we investigated whether adding the effects of an end-inspiratory occlusion and of an end-expiratory occlusion on velocity-time integral can predict fluid responsiveness with similar reliability than end-expiratory occlusion alone but with a higher threshold, which might be more compatible with the precision of echocardiography.DesignDiagnostic study.SettingMedical ICU.PatientsThirty mechanically ventilated patients in whom fluid administration was planned.InterventionsA 15-second end-expiratory occlusion and end-inspiratory occlusion, separated by 1 minute, followed by a 500-mL saline administration.Measurements And Main ResultsPulse contour analysis-derived cardiac index and velocity-time integral were measured during the last 5 seconds of 15-second end-inspiratory occlusion and end-expiratory occlusion and after fluid administration. End-expiratory occlusion increased velocity-time integral more in responders than in nonresponders to fluid administration (11% ± 5% vs 3% ± 1%, respectively; p < 0.0001), and end-inspiratory occlusion decreased velocity-time integral more in responders than in nonresponders (12% ± 5% vs 5% ± 2%, respectively; p = 0.0002). When adding the absolute values of changes in velocity-time integral observed during both occlusions, velocity-time integral changed by 23% ± 9% in responders and by 8% ± 3% in nonresponders. Fluid responsiveness was predicted by the end-expiratory occlusion-induced change in velocity-time integral with an area under the receiver operating characteristic curve of 0.938 (0.785-0.989) and a threshold value of 5%. Fluid responsiveness was predicted by the sum of absolute values of changes in velocity-time integral during both occlusions with a similar reliability (area under the receiver operating characteristic curve = 0.973 [0.838-1.000]) but with a threshold of 13%. Both sensitivity and specificity were 93% (68-100%).ConclusionsIf consecutive end-inspiratory occlusion and end-expiratory occlusion change velocity-time integral is greater than or equal to 13% in total, fluid responsiveness is accurately predicted. This threshold is more compatible with the precision of echocardiography than that obtained by end-expiratory occlusion alone.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.