-
Cardiovascular research · Feb 2004
Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 degrees C ischemia in intact hearts.
- Matthias L Riess, Amadou K S Camara, Leo G Kevin, Jianzhong An, and David F Stowe.
- Anesthesiology Research Laboratory, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Cardiovasc. Res. 2004 Feb 15; 61 (3): 580-90.
ObjectiveDifferent cardioprotective strategies such as ischemic or pharmacologic preconditioning lead to attenuated ischemia/reperfusion (I/R) injury with less mechanical dysfunction and reduced infarct size on reperfusion. Improved mitochondrial function during ischemia as well as on reperfusion is a key feature of cardioprotection. The best reversible cardioprotective strategy is hypothermia. We investigated mitochondrial protection before, during, and after hypothermic ischemia by measuring mitochondrial (m)Ca2+, NADH, and reactive oxygen species (ROS) by online spectrophotofluorometry in intact hearts.MethodsA fiberoptic cable was placed against the left ventricle of Langendorff-prepared guinea pig hearts to excite and record transmyocardial fluorescence at the appropriate wavelengths during 37 and 17 degrees C perfusion and during 30 min ischemia at 37 and 17 degrees C before 120 min reperfusion/rewarming.ResultsCold perfusion caused significant reversible increases in m[Ca2+], NADH, and ROS. Hypothermia prevented a further increase in m[Ca2+], excess ROS formation and NADH oxidation/reduction imbalance during ischemia, led to a rapid return to preischemic values on warm reperfusion, and preserved cardiac function and tissue viability on reperfusion.ConclusionsHypothermic perfusion at 17 degrees C caused moderate and reversible changes in mitochondrial function. However, hypothermia protects during ischemia, as shown by preservation of mitochondrial NADH energy balance and prevention of deleterious increases in m[Ca2+] and ROS formation. The close temporal relations of these factors during cooling and during ischemia suggest a causal link between mCa2+, mitochondrial energy balance, and ROS production.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.