• Proc Inst Mech Eng H · Mar 2017

    An innovative design for cardiopulmonary resuscitation manikins based on a human-like thorax and embedded flow sensors.

    • Mark Thielen, Rohan Joshi, Frank Delbressine, Sidarto Bambang Oetomo, and Loe Feijs.
    • 1 Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands.
    • Proc Inst Mech Eng H. 2017 Mar 1; 231 (3): 243-249.

    AbstractCardiopulmonary resuscitation manikins are used for training personnel in performing cardiopulmonary resuscitation. State-of-the-art cardiopulmonary resuscitation manikins are still anatomically and physiologically low-fidelity designs. The aim of this research was to design a manikin that offers high anatomical and physiological fidelity and has a cardiac and respiratory system along with integrated flow sensors to monitor cardiac output and air displacement in response to cardiopulmonary resuscitation. This manikin was designed in accordance with anatomical dimensions using a polyoxymethylene rib cage connected to a vertebral column from an anatomical female model. The respiratory system was composed of silicon-coated memory foam mimicking lungs, a polyvinylchloride bronchus and a latex trachea. The cardiovascular system was composed of two sets of latex tubing representing the pulmonary and aortic arteries which were connected to latex balloons mimicking the ventricles and lumped abdominal volumes, respectively. These balloons were filled with Life/form simulation blood and placed inside polyether foam. The respiratory and cardiovascular systems were equipped with flow sensors to gather data in response to chest compressions. Three non-medical professionals performed chest compressions on this manikin yielding data corresponding to force-displacement while the flow sensors provided feedback. The force-displacement tests on this manikin show a desirable nonlinear behaviour mimicking chest compressions during cardiopulmonary resuscitation in humans. In addition, the flow sensors provide valuable data on the internal effects of cardiopulmonary resuscitation. In conclusion, scientifically designed and anatomically high-fidelity designs of cardiopulmonary resuscitation manikins that embed flow sensors can improve physiological fidelity and provide useful feedback data.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…