• Neurosurgery · Oct 2018

    Unsupervised Learning of Spatiotemporal Interictal Discharges in Focal Epilepsy.

    • Maxime O Baud, Jonathan K Kleen, Gopala K Anumanchipalli, Liberty S Hamilton, Yee-Leng Tan, Robert Knowlton, and Edward F Chang.
    • Department of Neurological surgery, University of California, San Francisco, California.
    • Neurosurgery. 2018 Oct 1; 83 (4): 683-691.

    BackgroundInterictal epileptiform discharges are an important biomarker for localization of focal epilepsy, especially in patients who undergo chronic intracranial monitoring. Manual detection of these pathophysiological events is cumbersome, but is still superior to current rule-based approaches in most automated algorithms.ObjectiveTo develop an unsupervised machine-learning algorithm for the improved, automated detection and localization of interictal epileptiform discharges based on spatiotemporal pattern recognition.MethodsWe decomposed 24 h of intracranial electroencephalography signals into basis functions and activation vectors using non-negative matrix factorization (NNMF). Thresholding the activation vector and the basis function of interest detected interictal epileptiform discharges in time and space (specific electrodes), respectively. We used convolutive NNMF, a refined algorithm, to add a temporal dimension to basis functions.ResultsThe receiver operating characteristics for NNMF-based detection are close to the gold standard of human visual-based detection and superior to currently available alternative automated approaches (93% sensitivity and 97% specificity). The algorithm successfully identified thousands of interictal epileptiform discharges across a full day of neurophysiological recording and accurately summarized their localization into a single map. Adding a temporal window allowed for visualization of the archetypal propagation network of these epileptiform discharges.ConclusionUnsupervised learning offers a powerful approach towards automated identification of recurrent pathological neurophysiological signals, which may have important implications for precise, quantitative, and individualized evaluation of focal epilepsy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.