• Bmc Med Genomics · Aug 2016

    Biomedical event trigger detection by dependency-based word embedding.

    • Jian Wang, Jianhai Zhang, Yuan An, Hongfei Lin, Zhihao Yang, Yijia Zhang, and Yuanyuan Sun.
    • School of Computer Science and Technology, Dalian University of Technology, Dalian, China. wangjian@dlut.edu.cn.
    • Bmc Med Genomics. 2016 Aug 10; 9 Suppl 2: 45.

    BackgroundIn biomedical research, events revealing complex relations between entities play an important role. Biomedical event trigger identification has become a research hotspot since its important role in biomedical event extraction. Traditional machine learning methods, such as support vector machines (SVM) and maxent classifiers, which aim to manually design powerful features fed to the classifiers, depend on the understanding of the specific task and cannot generalize to the new domain or new examples.MethodsIn this paper, we propose an approach which utilizes neural network model based on dependency-based word embedding to automatically learn significant features from raw input for trigger classification. First, we employ Word2vecf, the modified version of Word2vec, to learn word embedding with rich semantic and functional information based on dependency relation tree. Then neural network architecture is used to learn more significant feature representation based on raw dependency-based word embedding. Meanwhile, we dynamically adjust the embedding while training for adapting to the trigger classification task. Finally, softmax classifier labels the examples by specific trigger class using the features learned by the model.ResultsThe experimental results show that our approach achieves a micro-averaging F1 score of 78.27 and a macro-averaging F1 score of 76.94 % in significant trigger classes, and performs better than baseline methods. In addition, we can achieve the semantic distributed representation of every trigger word.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.