• BMJ open · Jun 2017

    Use of a geographic information system to identify differences in automated external defibrillator installation in urban areas with similar incidence of public out-of-hospital cardiac arrest: a retrospective registry-based study.

    • David Fredman, Jan Haas, Yifang Ban, Martin Jonsson, Leif Svensson, Therese Djarv, Jacob Hollenberg, Per Nordberg, Mattias Ringh, and Andreas Claesson.
    • Department of Medicine, Karolinska Institutet, Center for Resuscitation Science, Solna, Sweden.
    • BMJ Open. 2017 Jun 2; 7 (5): e014801.

    ObjectivesEarly defibrillation in out-of-hospital cardiac arrest (OHCA) is of importance to improve survival. In many countries the number of automated external defibrillators (AEDs) is increasing, but the use is low. Guidelines suggest that AEDs should be installed in densely populated areas and in locations with many visitors. Attempts have been made to identify optimal AED locations based on the incidence of OHCA using geographical information systems (GIS), but often on small datasets and the studies are seldom reproduced. The aim of this paper is to investigate if the distribution of public AEDs follows the incident locations of public OHCAs in urban areas of Stockholm County, Sweden.MethodOHCA data were obtained from the Swedish Register for Cardiopulmonary Resuscitation and AED data were obtained from the Swedish AED Register. Urban areas in Stockholm County were objectively classified according to the pan-European digital mapping tool, Urban Atlas (UA). Furthermore, we reclassified and divided the UA land cover data into three classes (residential, non-residential and other areas). GIS software was used to spatially join and relate public AED and OHCA data and perform computations on relations and distance.ResultsBetween 1 January 2012 and 31 December 2014 a total of 804 OHCAs occurred in public locations in Stockholm County and by December 2013 there were 1828 AEDs available. The incidence of public OHCAs was similar in residential (47.3%) and non-residential areas (43.4%). Fewer AEDs were present in residential areas than in non-residential areas (29.4% vs 68.8%). In residential areas the median distance between OHCAs and AEDs was significantly greater than in non-residential areas (288 m vs 188 m, p<0.001).ConclusionThe majority of public OHCAs occurred in areas classified in UA as 'residential areas' with limited AED accessibility. These areas need to be targeted for AED installation and international guidelines need to take geographical location into account when suggesting locations for AED installation.© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.