• J. Thorac. Cardiovasc. Surg. · Feb 2018

    Comparative Study

    An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology.

    • Timothy Conover, Anthony M Hlavacek, Francesco Migliavacca, Ethan Kung, Adam Dorfman, Richard S Figliola, Tain-Yen Hsia, and Modeling of Congenital Hearts Alliance (MOCHA) Investigators.
    • Department of Mechanical Engineering, Clemson University, Clemson, SC.
    • J. Thorac. Cardiovasc. Surg. 2018 Feb 1; 155 (2): 712-721.

    ObjectiveModeling of single-ventricle circulations has yielded important insights into their unique flow dynamics and physiology. Here we translated a state-of-the-art mathematical model into a patient-specific clinical decision support interactive Web-based simulation tool and show validation for all 3 stages of single-ventricular palliation.MethodsVia the adoption a validated lumped parameter method, complete cardiovascular-pulmonary circulatory models of all 3 stages of single-ventricle physiology were created within a simulation tool. The closed-loop univentricular heart model includes scaling for growth and respiratory effects, and typical patient-specific parameters are entered through an intuitive user interface. The effects of medical or surgical interventions can be simulated and compared. To validate the simulator, patient parameters were collected from catheterization reports. Four simulator outputs were compared against catheterization findings: pulmonary to systemic flow ratio (Qp:Qs), systemic arterial saturation (SaO2), mean pulmonary arterial pressure (mPAp), and systemic-venous oxygen difference (SaO2-SvO2).ResultsData from 60 reports were used. Compared with the clinical values, the simulator results were not significantly different in mean Qp:Qs, SaO2, or mPAp (P > .09). There was a statistical but clinically insignificant difference in average SaO-SvO2 (average difference 1%, P < .01). Linear regression analyses revealed a good prediction for each variable (Qp:Qs, R2 = 0.79; SaO2, R2 = 0.64; mPAp, R2 = 0.69; SaO2-SvO2, R2 = 0.93).ConclusionsThis simulator responds quickly and predicts patient-specific hemodynamics with good clinical accuracy. By predicting postoperative and postintervention hemodynamics in all 3 stages of single-ventricle physiology, the simulator could assist in clinical decision-making, training, and consultation. Continuing model refinement and validation will further its application to the bedside.Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.