-
- Oliver Jansen, Dennis Grasmuecke, Renate C Meindl, Martin Tegenthoff, Peter Schwenkreis, Matthias Sczesny-Kaiser, Martin Wessling, Thomas A Schildhauer, Christian Fisahn, and Mirko Aach.
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany. Electronic address: oliver.jansen@bergmannsheil.de.
- World Neurosurg. 2018 Feb 1; 110: e73-e78.
IntroductionThe use of mobile exoskeletons is becoming more and more common in the field of spinal cord injury (SCI) rehabilitation. The hybrid assistive limb (HAL) exoskeleton provides a tailored support depending on the patient's voluntary drive.Materials And MethodsAfter a pilot study in 2014 that included 8 patients with chronic SCI, this study of 21 patients with chronic SCI serves as a proof of concept. It was conducted to provide further evidence regarding the efficacy of exoskeletal-based rehabilitation. Functional assessment included walking speed, distance, and time on a treadmill, with additional analysis of functional mobility using the following tests: 10-meter walk test (10MWT), timed up and go (TUG) test, 6-minute walk test (6MWT), and the walking index for SCI II (WISCI-II) score.ResultsAfter a training period of 90 days, all 21 patients significantly improved their functional and ambulatory mobility without the exoskeleton. Patients were assessed by the 6MWT, the TUG test, and the 10MWT, which also indicated an increase in the WISCI-II score along with significant improvements in HAL-associated walking speed, distance, and time.ConclusionAlthough, exoskeletons are not yet an established treatment in the rehabilitation of spinal cord injuries, the devices will play a more important role in the future. The HAL exoskeleton training enables effective, body weight-supported treadmill training and is capable of improving ambulatory mobility. Future controlled studies are required to enable a comparison of the new advances in the field of SCI rehabilitation with traditional over-ground training.Copyright © 2017 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.