• Br J Anaesth · Oct 2017

    Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep.

    • P Guldenmund, A Vanhaudenhuyse, R D Sanders, J Sleigh, M A Bruno, A Demertzi, M A Bahri, O Jaquet, J Sanfilippo, K Baquero, M Boly, J F Brichant, S Laureys, and V Bonhomme.
    • GIGA-Consciousness, Coma Science Group, Pain and Hypnosis, and Anesthesia and Intensive Care laboratories, GIGA Research, University and CHU University Hospital of Liège, Liège, Belgium.
    • Br J Anaesth. 2017 Oct 1; 119 (4): 674-684.

    BackgroundWe used functional connectivity measures from brain resting state functional magnetic resonance imaging to identify human neural correlates of sedation with dexmedetomidine or propofol and their similarities with natural sleep.MethodsConnectivity within the resting state networks that are proposed to sustain consciousness generation was compared between deep non-rapid-eye-movement (N3) sleep, dexmedetomidine sedation, and propofol sedation in volunteers who became unresponsive to verbal command. A newly acquired dexmedetomidine dataset was compared with our previously published propofol and N3 sleep datasets.ResultsIn all three unresponsive states (dexmedetomidine sedation, propofol sedation, and N3 sleep), within-network functional connectivity, including thalamic functional connectivity in the higher-order (default mode, executive control, and salience) networks, was significantly reduced as compared with the wake state. Thalamic functional connectivity was not reduced for unresponsive states within lower-order (auditory, sensorimotor, and visual) networks. Voxel-wise statistical comparisons between the different unresponsive states revealed that thalamic functional connectivity with the medial prefrontal/anterior cingulate cortex and with the mesopontine area was reduced least during dexmedetomidine-induced unresponsiveness and most during propofol-induced unresponsiveness. The reduction seen during N3 sleep was intermediate between those of dexmedetomidine and propofol.ConclusionsThalamic connectivity with key nodes of arousal and saliency detection networks was relatively preserved during N3 sleep and dexmedetomidine-induced unresponsiveness as compared to propofol. These network effects may explain the rapid recovery of oriented responsiveness to external stimulation seen under dexmedetomidine sedation.Trial Registry NumberCommittee number: 'Comité d'Ethique Hospitalo-Facultaire Universitaire de Liège' (707); EudraCT number: 2012-003562-40; internal reference: 20121/135; accepted on August 31, 2012; Chair: Prof G. Rorive. As it was considered a phase I clinical trial, this protocol does not appear on the EudraCT public website.© The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.