-
- Denise Brunozzi, Sophia F Shakur, Rahim Ismail, Andreas Linninger, Chih-Yang Hsu, Fady T Charbel, and Ali Alaraj.
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA.
- World Neurosurg. 2018 Feb 1; 110: e315-e320.
Background And PurposeDigital subtraction angiography (DSA) provides an excellent anatomic characterization of cerebral vasculature, but hemodynamic assessment is often qualitative and subjective. Various clinical algorithms have been produced to semiquantify flow from the data obtained from DSA, but few have tested them against reliable flow values.MethodsAn arched flow model was created and injected with contrast material. Seventeen injections were acquired in anterior-posterior and lateral DSA projections, and 4 injections were acquired in oblique projection. Image intensity change over the angiogram cycle of each DSA run was analyzed through a custom MATLAB code. Time-density plots obtained were divided into 3 components (time-density times, TDTs): TDT10%-100% (time needed for contrast material to change image intensity from 10% to 100%), TDT100%-10% (time needed for contrast material to change image intensity from 100% to 10%), and TDT25%-25% (time needed for contrast material to change from 25% image intensity to 25%). Time-density index (TDI) was defined as model cross-sectional area to TDT ratio, and it was measured against different flow rates.ResultsTDI10%-100%, TDI100%-10%, and TDI25%-25% all correlated significantly with flow (P < 0.001). TDI10%-100%, TDI100%-10%, and TDI25%-25% showed, respectively, a correlation coefficient of 0.91, 0.91, and 0.97 in the anterior-posterior DSA projections (P < 0.001). In the lateral DSA projection, TDI100%-10% showed a weaker correlation (r = 0.57; P = 0.03). Also in the oblique DSA projection, TDIs correlated significantly with flow.ConclusionsTDI on DSA correlates significantly with flow. Although in vitro studies might overlook conditions that occur in patients, this method appears to correlate with the flow and could offer a semiquantitative method to evaluate the cerebral blood flow.Copyright © 2017 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.