• Experimental neurology · May 2000

    In situ produced 7-chlorokynurenate provides protection against quinolinate- and malonate-induced neurotoxicity in the rat striatum.

    • P Guidetti, H Q Wu, and R Schwarcz.
    • Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA.
    • Exp. Neurol. 2000 May 1; 163 (1): 123-30.

    AbstractExcitotoxic mechanisms may play a critical role in the pathophysiology of several neurological and psychiatric diseases. Excitatory amino acid receptor antagonists are therefore of great therapeutic interest, but untoward side effects often prevent their clinical use. Targeting the glycine coagonist site of the (NMDA) receptor may bypass these shortcomings. The present study was designed to evaluate the neuroprotective characteristics of l-4-chlorokynurenine (4-Cl-KYN), a synthetic compound which is enzymatically converted to the selective glycine/NMDA receptor antagonist 7-chlorokynurenate (7-Cl-KYNA). Using slow (2 h) intrastriatal infusions of the excitotoxins quinolinate (QUIN; 120 nmol) or malonate (6.8 micromol) as the experimental paradigm, the neuroprotective potency of 4-Cl-KYN was first compared with that of exogenous 7-Cl-KYNA, using glutamate decarboxylase activity as a lesion marker. One hundred and thirty-five nanomoles of the prodrug 4-Cl-KYN or 27 nmol 7-Cl-KYNA, the former used in a pre- and cotreatment regimen, were required to block QUIN or, less efficiently, malonate toxicity. In separate animals, the metabolic fate of this neuroprotective dose of 4-Cl-KYN was examined in vivo. In control striata, the treatment gave rise to 170 +/- 25 pmol 7-Cl-KYNA/mg protein, approximately six times less than an infusion of 27 nmol exogenous 7-Cl-KYNA, indicating greatly superior efficacy of the focally produced antagonist. Notably, the conversion of 4-Cl-KYN to 7-Cl-KYNA increased by 82% in the presence of QUIN. 4-Cl-KYN was also metabolized to 4-chloro-3-hydroxyanthranilate, an established, powerful inhibitor of QUIN synthesis. This unique pharmacological profile and the fact that the prodrug, unlike 7-Cl-KYNA, readily penetrates the blood-brain barrier suggest that 4-Cl-KYN may be exceptionally useful as an anti-excitotoxic agent.Copyright 2000 Academic Press.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…