• Resuscitation · Apr 2018

    A new physiological model for studying the effect of chest compression and ventilation during cardiopulmonary resuscitation: The Thiel cadaver.

    • Emmanuel Charbonney, Stéphane Delisle, Dominique Savary, Gilles Bronchti, Marceau Rigollot, Adrien Drouet, Bilal Badat, Paul Ouellet, Patrice Gosselin, Alain Mercat, Laurent Brochard, Richard Jean-Christophe M JM SAMU74, Emergency Department, General Hospital of Annecy, Annecy, France; INSERM UMR 955, Créteil, France., and CAVIAR.
    • Centre de Recherche de l 'Hôpital du Sacré-cœur de Montréal, Montreal, Canada; Département de médecine, Faculté de Médecine Université de Montréal, Montreal, Canada; Laboratoire d'anatomie, Université du Québec à Trois-Rivières (UQTR) et CIUSSS MCQ, Trois-Rivières, Canada. Electronic address: emmanuel.charbonney@umontreal.ca.
    • Resuscitation. 2018 Apr 1; 125: 135-142.

    BackgroundStudying ventilation and intrathoracic pressure (ITP) induced by chest compressions (CC) during Cardio Pulmonary Resuscitation is challenging and important aspects such as airway closure have been mostly ignored. We hypothesized that Thiel Embalmed Cadavers could constitute an appropriate model.MethodsWe assessed respiratory mechanics and ITP during CC in 11 cadavers, and we compared it to measurements obtained in 9 out-of-hospital cardiac arrest patients and to predicted values from a bench model. An oesophageal catheter was inserted to assess chest wall compliance, and ITP variation (ΔITP). Airway pressure variation (ΔPaw) at airway opening and ΔITP generated by CC were measured at decremental positive end expiratory pressure (PEEP) to test its impact on flow and ΔPaw. The patient's data were derived from flow and airway pressure captured via the ventilator during resuscitation.ResultsResistance and Compliance of the respiratory system were comparable to those of the out-of-hospital cardiac arrest patients (CRSTEC 42 ± 12 vs CRSPAT 37.3 ± 10.9 mL/cmH2O and ResTEC 17.5 ± 7.5 vs ResPAT 20.2 ± 5.3 cmH2O/L/sec), and remained stable over time. During CC, ΔITP varied from 32 ± 12 cmH2O to 69 ± 14 cmH2O with manual and automatic CC respectively. Transmission of ΔITP at the airway opening was significantly affected by PEEP, suggesting dynamic small airway closure at low lung volumes. This phenomenon was similarly observed in patients.ConclusionRespiratory mechanics and dynamic pressures during CC of cadavers behave as predicted by a theoretical model and similarly to patients. The Thiel model is a suitable to assess ITP variations induced by ventilation during CC.Copyright © 2018 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.