-
AJNR Am J Neuroradiol · Sep 2016
Tractography at 3T MRI of Corpus Callosum Tracts Crossing White Matter Hyperintensities.
- W Reginold, J Itorralba, A C Luedke, J Fernandez-Ruiz, J Reginold, O Islam, and A Garcia.
- From the Departments of Medical Imaging (W.R.) Memory Clinics (W.R., A.G.), Division of Geriatric Medicine, Department of Medicine wreginold@qmed.ca.
- AJNR Am J Neuroradiol. 2016 Sep 1; 37 (9): 1617-22.
Background And PurposeThe impact of white matter hyperintensities on the diffusion characteristics of crossing tracts is unclear. This study used quantitative tractography at 3T MR imaging to compare, in the same individuals, the diffusion characteristics of corpus callosum tracts that crossed white matter hyperintensities with the diffusion characteristics of corpus callosum tracts that did not pass through white matter hyperintensities.Materials And MethodsBrain T2 fluid-attenuated inversion recovery-weighted and diffusion tensor 3T MR imaging scans were acquired in 24 individuals with white matter hyperintensities. Tractography data were generated by the Fiber Assignment by Continuous Tracking method. White matter hyperintensities and corpus callosum tracts were manually segmented. In the corpus callosum, the fractional anisotropy, radial diffusivity, and mean diffusivity of tracts crossing white matter hyperintensities were compared with the fractional anisotropy, radial diffusivity, and mean diffusivity of tracts that did not cross white matter hyperintensities. The cingulum, long association fibers, corticospinal/bulbar tracts, and thalamic projection fibers were included for comparison.ResultsWithin the corpus callosum, tracts that crossed white matter hyperintensities had decreased fractional anisotropy compared with tracts that did not pass through white matter hyperintensities (P = .002). Within the cingulum, tracts that crossed white matter hyperintensities had increased radial diffusivity compared with tracts that did not pass through white matter hyperintensities (P = .001).ConclusionsIn the corpus callosum and cingulum, tracts had worse diffusion characteristics when they crossed white matter hyperintensities. These results support a role for white matter hyperintensities in the disruption of crossing tracts.© 2016 by American Journal of Neuroradiology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.