-
- Miriam S Reuter, Susan Walker, Bhooma Thiruvahindrapuram, Joe Whitney, Iris Cohn, Neal Sondheimer, YuenRyan K CRKCThe Centre for Applied Genomics (Reuter, Walker, Thiruvahindrapuram, Whitney, Yuen, Trost, Paton, Pereira, Herbrick, Wintle, Merico, Howe, MacDonald, Lu, Nalpathamkalam, Sung, Wang, Patel, Pellecchia, J. Wei, Strug, Bell, Kellam, Mahtani, H, Brett Trost, Tara A Paton, Sergio L Pereira, Jo-Anne Herbrick, Richard F Wintle, Daniele Merico, Jennifer Howe, Jeffrey R MacDonald, Chao Lu, Thomas Nalpathamkalam, SungWilson W LWWLThe Centre for Applied Genomics (Reuter, Walker, Thiruvahindrapuram, Whitney, Yuen, Trost, Paton, Pereira, Herbrick, Wintle, Merico, Howe, MacDonald, Lu, Nalpathamkalam, Sung, Wang, Patel, Pellecchia, J. Wei, Strug, Bell, Kellam, Mahtani,, Zhuozhi Wang, Rohan V Patel, Giovanna Pellecchia, John Wei, Lisa J Strug, Sherilyn Bell, Barbara Kellam, Melanie M Mahtani, Anne S Bassett, Yvonne Bombard, Rosanna Weksberg, Cheryl Shuman, Ronald D Cohn, Dimitri J Stavropoulos, Sarah Bowdin, Matthew R Hildebrandt, Wei Wei, Asli Romm, Peter Pasceri, James Ellis, Peter Ray, M Stephen Meyn, Nasim Monfared, S Mohsen Hosseini, Ann M Joseph-George, Fred W Keeley, Ryan A Cook, Marc Fiume, Hin C Lee, Christian R Marshall, Jill Davies, Allison Hazell, Janet A Buchanan, Michael J Szego, and Stephen W Scherer.
- The Centre for Applied Genomics (Reuter, Walker, Thiruvahindrapuram, Whitney, Yuen, Trost, Paton, Pereira, Herbrick, Wintle, Merico, Howe, MacDonald, Lu, Nalpathamkalam, Sung, Wang, Patel, Pellecchia, J. Wei, Strug, Bell, Kellam, Mahtani, Hosseini, Fiume, Marshall, Buchanan, Scherer); Divisions of Clinical Pharmacology and Toxicology (I. Cohn), or Clinical, and Metabolic Genetics (Sondheimer, Weksberg, Shuman, Bowdin, Meyn, Monfared), The Hospital for Sick Children; Departments of Paediatrics (Sondheimer, R. Cohn) and Molecular Genetics (Yuen, Weksberg, Shuman, R. Cohn, Ellis, Meyn), University of Toronto; Deep Genomics Inc. (Merico); Department of Psychiatry (Bassett), University Health Network and Centre for Addiction and Mental Health, University of Toronto; Li Ka Shing Knowledge Institute (Bombard), St. Michael's Hospital; Institute of Health Policy, Management and Evaluation (Bombard), University of Toronto; Centre for Genetic Medicine (Stavropoulos, Bowdin, Ray, Monfared); Molecular Genetics Laboratory (Stavropoulos, Ray, Marshall), Division of Genome Diagnostics, Paediatric Laboratory Medicine; Developmental and Stem Cell Biology (Hildebrandt, W. Wei, Romm, Pasceri, Ellis); Ted Rogers Cardiac Genome Clinic (Hosseini); Cytogenetics Laboratory (Joseph-George), Division of Genome Diagnostics, Paediatric Laboratory Medicine, The Hospital for Sick Children; Departments of Biochemistry and Laboratory Medicine, and Pathobiology (Keeley), University of Toronto; DNAstack (Cook, Fiume); McLaughlin Centre (Lee, Scherer), University of Toronto; Medcan Health Management Inc. (Davies, Hazell); Dalla Lana School of Public Health (Szego), Department of Family and Community Medicine, and The Joint Centre for Bioethics, University of Toronto; Centre for Clinical Ethics (Szego), St. Joseph's Health Centre, Toronto, Ont.
- CMAJ. 2018 Feb 5; 190 (5): E126E136E126-E136.
BackgroundThe Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers.MethodsVolunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant.ResultsWhole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set (n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual.InterpretationOur analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care.© 2018 Joule Inc. or its licensors.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.