• Clin. Orthop. Relat. Res. · Sep 2015

    Review Comparative Study

    Blast Injury in the Spine: Dynamic Response Index Is Not an Appropriate Model for Predicting Injury.

    • Edward Spurrier, James A G Singleton, Spyros Masouros, Iain Gibb, and Jon Clasper.
    • Royal Centre for Defence Medicine, Birmingham, UK, e.spurrier13@imperial.ac.uk.
    • Clin. Orthop. Relat. Res. 2015 Sep 1; 473 (9): 2929-35.

    BackgroundImprovised explosive devices are a common feature of recent asymmetric conflicts and there is a persistent landmine threat to military and humanitarian personnel. Assessment of injury risk to the spine in vehicles subjected to explosions was conducted using a standardized model, the Dynamic Response Index (DRI). However, the DRI was intended for evaluating aircraft ejection seats and has not been validated in blast conditions.Questions/PurposesWe asked whether the injury patterns seen in blast are similar to those in aircraft ejection and therefore whether a single injury prediction model can be used for both situations.MethodsUK military victims of mounted blast (seated in a vehicle) were identified from the Joint Theatre Trauma Registry. Each had their initial CT scans reviewed to identify spinal fractures. A literature search identified a comparison population of ejected aircrew with spinal fractures. Seventy-eight blast victims were identified with 294 fractures. One hundred eighty-nine patients who had sustained aircraft ejection were identified with 258 fractures. The Kruskal-Wallis test was used to compare the population injury distributions and Fisher's exact test was used to assess differences at each spinal level.ResultsThe distribution of injuries between blast and ejection was not similar. In the cervical spine, the relative risk of injury was 11.5 times higher in blast; in the lumbar spine the relative risk was 2.9 times higher in blast. In the thoracic spine, the relative risk was identical in blast and ejection. At most individual vertebral levels including the upper thoracic spine, there was a higher risk of injury in the blast population, but the opposite was true between T7 and T12, where the risk was higher in aircraft ejection.ConclusionsThe patterns of injury in blast and aircraft are different, suggesting that the two are mechanistically dissimilar. At most vertebral levels there is a higher relative risk of fracture in the blast population, but at the apex of the thoracic spine and in the lower thoracic spine, there is a higher risk in ejection victims. The differences in relative risk at different levels, and the resulting overall different injury patterns, suggest that a single model cannot be used to predict the risk of injury in ejection and blast.Clinical RelevanceA new model needs to be developed to aid in the design of mine-protected vehicles for future conflicts.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…