• J Occup Environ Hyg · Jan 2016

    Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator.

    • Xiaotie Zhang, Hui Li, Shengnan Shen, and Mang Cai.
    • a School of Power and Mechanical Engineering, Wuhan University , Wuhan , China.
    • J Occup Environ Hyg. 2016 Jan 1; 13 (5): 372-82.

    AbstractThis article presents a reverse modeling of the headform when wearing a filtering facepiece respirator (FFR) and a computational fluid dynamics (CFD) simulation based on the modeling. The whole model containing the upper respiratory airway, headform, and FFR was directly recorded by computed tomography (CT) scanning, and a medical contrast medium was used to make the FFR "visible." The FFR was normally worn by the subject during CT scanning so that the actual deformation of both the FFR and the face muscles during contact can be objectively conserved. The reverse modeling approach was introduced to rebuild the geometric model and convert it into a CFD solvable model. In this model, we conducted a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, and pressure and wall shear stress distribution in the respiratory system taking into consideration an individual wearing a FFR. The breathing cycle was described as a time-dependent profile of the air velocity through the respiratory airway. The result shows that wearing the N95 FFR results in CO2 accumulation, an increase in temperature and pressure elevation inside the FFR cavity. The volume fraction of CO2 reaches 1.2% after 7 breathing cycles and then is maintained at 3.04% on average. The wearers re-inhale excessive CO2 in every breathing cycle from the FFR cavity. The air temperature in the FFR cavity increases rapidly at first and then stays close to the exhaled temperature. Compared to not wearing an FFR, wearers have to increase approximately 90 Pa more pressure to keep the same breathing flow rate of 30.54 L/min after wearing an FFR. The nasal vestibule bears more wall shear stress than any other area in the airway.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…