• J Clin Epidemiol · Oct 2008

    Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study.

    • Peter C Austin.
    • Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada. peter.austin@ices.on.ca
    • J Clin Epidemiol. 2008 Oct 1; 61 (10): 1009-17.e1.

    ObjectiveResearchers have proposed using bootstrap resampling in conjunction with automated variable selection methods to identify predictors of an outcome and to develop parsimonious regression models. Using this method, multiple bootstrap samples are drawn from the original data set. Traditional backward variable elimination is used in each bootstrap sample, and the proportion of bootstrap samples in which each candidate variable is identified as an independent predictor of the outcome is determined. The performance of this method for identifying predictor variables has not been examined.Study Design And SettingMonte Carlo simulation methods were used to determine the ability of bootstrap model selection methods to correctly identify predictors of an outcome when those variables that are selected for inclusion in at least 50% of the bootstrap samples are included in the final regression model. We compared the performance of the bootstrap model selection method to that of conventional backward variable elimination.ResultsBootstrap model selection tended to result in an approximately equal proportion of selected models being equal to the true regression model compared with the use of conventional backward variable elimination.ConclusionBootstrap model selection performed comparatively to backward variable elimination for identifying the true predictors of a binary outcome.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…