• Hippocampus · Sep 2011

    Selective disconnection of the hippocampal formation projections to the mammillary bodies produces only mild deficits on spatial memory tasks: implications for fornix function.

    • Seralynne D Vann, Jonathan T Erichsen, Shane M O'Mara, and John P Aggleton.
    • School of Psychology, Cardiff University, United Kingdom. vannsd@cardiff.ac.uk
    • Hippocampus. 2011 Sep 1; 21 (9): 945-57.

    AbstractIt is now clear that the integrity of the fornix is important for normal mnemonic function. The fornix, however, is a major white matter tract, carrying numerous hippocampal formation afferents and efferents, and it is not known which specific components support memory processes. Established theories of extended hippocampal function emphasize the sequential pathway from the hippocampal formation (i.e., subicular complex) to the mammillary bodies and, thence, to the anterior thalamus, as pathology in each of these structures is implicated in anterograde amnesia in humans and spatial memory deficits in rats. The specific importance of the hippocampal formation projections that just innervate the mammillary bodies has, however, never been tested. This study isolated these specific projections in the rat by selectively cutting the descending component of the postcommissural fornix. Two successive, cohorts of rats with these tract lesions were tested on working memory tasks in the water-maze, T-maze, and radial-arm maze. Disconnecting the descending postcommissural fornix had only a mild effect or sometimes no apparent effect on the performance of these spatial memory tasks, even though tracing experiments confirmed the loss of hippocampal formation-mammillary projections. One implication is that the spatial deficits found in rats following standard fornix lesions are only partly attributable to the loss of projections from the hippocampal formation to the mammillary bodies. Perhaps more surprising, the behavioral impact of cutting the descending postcommissural fornix in rats appeared appreciably less than the effect of either mammillary body or mammillothalamic tract lesions. The present experiments show that the mammillary bodies can still effectively support spatial memory in the absence of their dense subicular complex inputs, so revealing the importance of the other afferents for sustaining mammillary body function. This new evidence for independent functions shows that the mammillary bodies are more than just a hippocampal relay.Copyright © 2010 Wiley-Liss, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.