-
- Lijian Chen, Manli Chen, Jian Du, Lijuan Wan, Lei Zhang, and Erwei Gu.
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- J. Surg. Res. 2016 Jun 15; 203 (2): 483-90.
BackgroundHyperglycemia is proposed to be an independent risk factor for cardiovascular morbidity and mortality. Preclinical studies suggest that diabetes mellitus exacerbates myocardial ischemia/reperfusion injury and attenuates the effects of cardioprotective strategies. The cardioprotective effects of postconditioning with the opioid analgesic remifentanil against ischemia/reperfusion injury under the hyperglycemic condition remain contradictory. Therefore, the aim of this study was to investigate the mechanisms by which hyperglycemia affects cardioprotection induced by remifentanil postconditioning.Materials And MethodsH9c2 cardiomyoblasts were cultured under the normoglycemic or hyperglycemic condition. Cells were exposed to hypoxia/reoxygenation (H/R) injury followed by hypoxia postconditioning (HPC group) or remifentanil postconditioning (RPC group). Cell viability, injury, and apoptosis were measured after each postconditioning treatment. Activation of endoplasmic reticulum stress (ERS) was analyzed by examining the protein levels of GRP78, CHOP, cleaved caspase-12 and cleaved caspase-3.ResultsRPC significantly increased cell viability and reduced apoptosis in normoglycemic cardiomyoblasts, but not in hyperglycemic cardiomyoblasts. HPC and RPC markedly decreased the upregulation of GRP78, CHOP, cleaved caspase 12, and cleaved caspase 3 in response to H/R injury under the normoglycemic condition. Hyperglycemia significantly increased these ERS-associated biomarkers and apoptosis, which could not be reduced by HPC or RPC.ConclusionsRemifentanil postconditioning protected cardiomyoblasts from H/R injury under normoglycemia, at least in part, through inhibiting ERS-induced apoptosis. Hyperglycemia attenuated the cardioprotection conferred by remifentanil postconditioning, likely as a result of the exacerbated ERS. Inhibiting the ERS response may be an attractive strategy to enhance the cardioprotective effects of postconditioning in diabetic patients.Copyright © 2016 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.