• Spine · Jul 2008

    Comparative Study

    Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study.

    • Yan Chevalier, Dieter Pahr, Mathieu Charlebois, Paul Heini, Erich Schneider, and Philippe Zysset.
    • Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria. yan@ilsb.tuwien.ac.at
    • Spine. 2008 Jul 15; 33 (16): 1722-30.

    Study DesignThe biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis.ObjectivesTo compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables.Summary Of Background DataPrevious FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation.MethodsTwelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances.ResultsCement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance.ConclusionThe developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.