• J. Dermatol. Sci. · Aug 2016

    Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling.

    • Fengjun Fang, Ru-Lin Huang, Yongchao Zheng, Ming Liu, and Ran Huo.
    • Department of Aesthetic, Plastic, and Burn Surgery, Shangdong Provincial Hospital, Shangdong University, No. 324 Jing 5 wei 7 Road, Jinan 250021, China; Department of Plastic Surgery, People's Hospital of Jimo, No. 4 Jianmin Road, Jimo 266200, China.
    • J. Dermatol. Sci. 2016 Aug 1; 83 (2): 95-105.

    BackgroundHypertrophic scars and keloids, characterized by over-proliferation of fibroblasts and aberrant formation of the extracellular matrix (ECM), are considered fibrotic diseases. Accumulating evidence indicates that mesenchymal stem cells (MSCs) promote scar-free wound healing and inhibit fibrotic tissue formation, making them a potentially effective therapeutic treatment for hypertrophic scars and keloids.ObjectiveTo investigate the paracrine effects of bone marrow derived MSCs (BMSCs) on the biological behavior of hypertrophic scar fibroblasts (HSFs) and keloid fibroblasts (KFs).MethodsProliferative and profibrotic phenotype changes of the fibroblasts were analyzed by immunofluorescence staining, in-cell western blot, and real-time PCR.ResultsBMSC-conditioned medium inhibited HSF and KF proliferation and migration, but did not induce apoptosis. Interestingly, normal skin fibroblast-conditioned medium exhibited no inhibitory effects on HSF or KF proliferation and migration. Furthermore, BMSC-conditioned medium significantly decreased expression of profibrotic genes, including connective tissue growth factor, plasminogen activator inhibitor-1, transforming growth factor-β1, and transforming growth factor-β2, in HSFs and KFs at both transcriptional and translational levels. In contrast, the expression of antifibrotic genes, such as transforming growth factor-β3 and decorin, was substantially enhanced under the same culture conditions. Finally, we observed that BMSC-conditioned medium suppressed the ECM synthesis in HSFs and KFs, as indicated by decreased expression of collagen I and fibronectin and low levels of hydroxyproline in cell culture supernatant.ConclusionThese findings suggest that BMSCs attenuate the proliferative and profibrotic phenotype associated with HSFs and KFs and inhibit ECM synthesis through a paracrine signaling mechanism.Copyright © 2016. Published by Elsevier Ireland Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.